
Open Source Software Policy in Industry Equilibrium

Jeff Gortmaker∗

Harvard University

November 6, 2024
Latest version

Abstract

Open source software (OSS) is a form of public knowledge widely provided and relied
on by the private sector. To study the effects of growing government involvement in
this critical public good, I build a new empirical model where high-tech firms choose
software inputs and developer labor in competitive equilibrium. For estimation, I
create a new dataset of OSS and in-house investment for the global web development
industry, where software choices are directly observable. I simulate counterfactuals to
assess the global impact of China tightening its recent internet restrictions on cross-
border OSS collaboration or increasing its financial support for domestic OSS. I find
that stricter restrictions do little to boost domestic OSS investment. Instead, lost
spillovers raise web development costs in China by $2 per dollar of disincentive and $7
globally. Heightened subsidies prove more effective at increasing domestic investment
and cut global costs by $11 per dollar of subsidy—tripling if the US responds in kind.

∗jgortmaker@g.harvard.edu. I am grateful to Myrto Kalouptsidi, Robin Lee, Frank Nagle, and Ariel Pakes
for their advice and support. For comments, data, and discussions, I also thank Constanza Abuin, Maxim
Alekseev, Luis Armona, Sam Boysel, Kevin Chen, Chris Conlon, Leonardo D’Amico, Pedro Degiovanni, Mert
Demirer, Ed Glaeser, Shane Greenstein, Gordon Hanson, Kate Ho, Manuel Hoffmann, Garrett Johnson,
Louis Kaplow, Justin Katz, Lev Klarnet, Rem Koning, Josh Lerner, Tianli Li, Andrés de Loera, Katy
Ma, Pierfrancesco Mei, Namrata Narain, Nano Ochoa, Raphael Raux, Tomas Reimers, Peleg Samuels,
Kunal Sangani, Suproteem Sarkar, Steve Schmeiser, Alexander Staub, Wilbur Townsend, Chris Walker,
Andi Wang, Kevin Xu, David Yang, Daniel Yue, Brandon Zborowski, Jieying Zhang, Ruby Zhang, Yanuo
Zhou, and Harvard workshop participants.

https://jeffgortmaker.com/files/Open_Source_Software_Policy_in_Industry_Equilibrium.pdf
mailto:jgortmaker@g.harvard.edu

“Open source software is at the heart

of Apple platforms and developer tools.

Apple works with developers around the

world to create, contribute, and release

open source code.”

“Accelerate the construction of domestic open source

communities and create equal access for participants.

Develop profit-generating operating mechanisms to

guide domestic open source innovation forces to the

international open source community.”

— Apple’s open source website, 2021

redesign, opensource.apple.com.

— China’s 14th Five-Year Plan for National

Informatization, 2021, translated by Google.

1. Introduction

The private sector creates many forms of public knowledge, including basic innovation, open

data, and academic research. Open source software (OSS)—computer programs freely avail-

able for use and modification—is public knowledge in the form of code and documentation.

OSS is widespread: a recent survey found that 96% of commercial codebases use OSS, and

77% of total code is OSS (Synopsys, 2024). Estimates of the cost to recreate all OSS range

from billions of dollars in the US (Robbins et al., 2021) to trillions globally (Hoffmann et al.,

2024). Even Apple, known for its secrecy, both uses and provides OSS, as quoted above.

While few governments have directly intervened in OSS (Lostri et al., 2023), China has

recently expressed its intent to support domestic OSS, quoted above. It has also subsidized

its domestic OSS platform and imposed new restrictions on cross-border OSS collaboration,

as I show below. More broadly, rising US-China tensions may threaten collaboration on

other global public goods, such as basic research (e.g., Flynn et al., 2024). Since US and

Chinese firms are global leaders in OSS investment, and OSS is a critical input for firms

worldwide, government involvement could have significant consequences.

Two key characteristics of privately provided knowledge are especially relevant for policy-

making. First, contributions to public goods can come with private benefits (Olson, 1965).

For instance, OSS contributors often add features they themselves need, as their firms rely

on OSS (Nagle et al., 2020). Second, public benefits can be localized (Tiebout, 1956). For in-

stance, OSS features documented in Chinese primarily benefit Chinese firms. Underprovision

due to weak private benefits may justify subsidizing OSS investment (Pigou, 1920), while

strongly localized benefits may justify other policies, such as restrictions, that coordinate

domestic firms to use and invest in domestic OSS (e.g., Rosenstein-Rodan, 1943).

To quantify policy tradeoffs, I build a new model of private incentives for using and

investing in different OSS, tailored to newly-assembled data on the web development in-

dustry. Each year, firms choose which software they use to build their websites and how

much labor to invest in software codebases, a form of knowledge capital. Firms can use

1

https://opensource.apple.com/

and invest in both OSS and their own in-house software. These choices affect web devel-

opment costs through developer wages and website quality through a production function.

After firms make choices, consumers choose which websites to visit based on quality, firm

country, and content language. Firms then receive profit—revenue from traffic minus labor

costs—and consumers receive utility. Firms are myopic, but persistence arises from capital

accumulation, switching costs, and autocorrelated unobservables.

The model’s central externality is that firms using an OSS benefit from other firms’

contributions to that OSS. In addition to this public benefit of OSS investment, the model

features two private benefits: contributions particularly improve a firm’s own codebase, and

developers may accept lower wages to work on OSS as an amenity.1 Finally, the model

features a form of localization particularly relevant to government policy: firms benefit more

from contributions within their own country.

In the model, if the public benefits of OSS greatly outweigh the private benefits of OSS

investment, OSS will be severely underprovided by the private sector, and subsidies can prove

effective at addressing this underprovision. Since public benefits are localized, subsidizing

domestic investment or restricting foreign collaboration can help coordinate firms to use

and invest in domestic OSS. However, under fierce competition, if OSS greatly damages or

improves product quality, business stealing can either strengthen or weaken OSS policies.2 I

estimate these tradeoffs for a specific industry.

I focus on web development: a large but relatively understudied industry,3 where one

can observe a website’s software inputs directly in its browser-facing code, offering a rare

view “under the hood” of the tech sector. I construct a new panel of firms operating one or

more of the world’s 10,000 most-visited websites annually from 2014 to 2022. I identify the

software firms use to build their websites and measure how they allocate web developer labor

to in-house investment and different web OSS. By estimating the hours invested in different

software capital stocks, I create new measures of knowledge capital for high-tech firms.

1Below, I discuss how much of the OSS literature focuses on why individuals contribute. Prominent
motivations in the literature, as well as in recent survey evidence (e.g., Nagle et al., 2020), include on-the-job
work, career concerns, intrinsic motivation, and reciprocal altruism.

2Suppose OSS subsidies increase investment, lowering firms’ costs and leading to greater OSS use. If
this also improves quality, and competition over quality is intense, firms may internalize that their OSS
investment causes business stealing, dampening the policy’s impact. Conversely, if OSS use harms website
quality but firms still prefer it to cut costs, business stealing could amplify the policy.

3To my knowledge, I am the first to estimate an empirical model of the web development industry.
Existing literature on web OSS has primarily focused on the security and value of servers (e.g., Greenstein
and Nagle, 2014; Murciano-Goroff et al., 2021, 2024; Ackermann and Greenstein, 2024). I focus on backend,
JavaScript, and UI frameworks, which have received less attention but more OSS investment in recent years.

2

My dataset offers several advantages, including rich information on OSS contributions

from the global OSS platform (GitHub) and, unusual in the OSS literature, firm-level data

on OSS use. I estimate the time spent on each OSS contribution to measure OSS investment

in hours. My measure of in-house web development investment is coarser, scaling with the

number of web developers employed and their typical workweeks.4 The core of the dataset

is a large-scale match between the global population of web developers—including 223,371

contributors to 27 major web OSS—and the website-owning firms listed on developers’ online

resumes from LinkedIn and GitHub. This match helps overcome common challenges in

identifying innovation spillovers, and allows me to measure spillovers directly: I observe

which firms invest in each web OSS and which use these same OSS in production.

Using my dataset, I first document overall patterns of OSS investment and use.5 OSS

investment is rare: investment in major web OSS is four orders of magnitude lower than

in-house investment in web development. However, OSS use is widespread: nearly half of

the firms in my dataset use at least one of these web OSS in production. Large firms, often

based in the US, contribute disproportionately. In total, China ranks second. Per developer,

however, the US and Europe contribute more intensively than China and India.

Next, I estimate my model of web development costs by matching simulated moments

(McFadden, 1989; Pakes and Pollard, 1989) based on firm-level patterns of OSS investment

and use. Firms tend to invest in and use OSS that is (i) highly developed, (ii) domestically

developed, and (iii) self-made. The model translates these patterns into estimated (i) public,

(ii) localized, and (iii) private benefits, captured by lower developer wages required to invest

in and use OSS with (i) more, (ii) domestic, and (iii) own investment. Since within-firm

wage data are scarce, I use firms’ revealed preferences to infer these wage reductions, scaled

to match typical web developer wages by country. Where possible, I validate these estimates

using limited data on wages of web developers working with different web OSS.

Firms minimize web development costs subject to a website quality production function,

which I estimate using standard timing assumptions (Olley and Pakes, 1996; Levinsohn and

Petrin, 2003; Ackerberg, Caves, and Frazer, 2015). I derive quality from a discrete choice

demand model (Berry, Levinsohn, and Pakes, 1995, 2004), where websites are differentiated

by quality, firm country, and content language. The model translates overall traffic into

4Tambe et al. (2020) also use LinkedIn data on tech employment to measure in-house knowledge capital,
focusing on hedonic regressions of US public firms’ market value on tech wage bills. My approach is com-
plementary, assigning value to knowledge capital—in-house and open—based on firms’ revealed preferences.

5I build on earlier work on the geography of OSS contributions (e.g., Gonzalez-Barahona et al., 2008;
Wachs et al., 2022) by comparing contributions with firm-level web OSS usage.

3

quality estimates, and country traffic shares into consumer “home biases.” I use firms’ quality

choices to infer the amount of revenue generated by traffic, and validate my estimates with

what limited data are available on website revenue.

These estimates capture the balance of forces in the model, which shape the economic

impact of OSS policies. I estimate a wide gap between the private cost reductions from OSS

investment and the public cost reductions shared across firms, suggesting subsidies could

help close this gap. I also estimate that these cost reductions are moderately, but not over-

poweringly localized, affecting how domestic subsidies or restrictions on foreign collaboration

can address coordination issues. On the demand side, consumers show strong “home bias,”

limiting cross-border competition. I also estimate a weak link between OSS use and website

quality, further reducing the role of product market competition and business stealing, which

could otherwise complicate policy outcomes.

Using the estimated model, I simulate counterfactuals to assess the global impact of

China continuing to extend its OSS policies. In the next section, I provide the first empirical

evidence that China has recently imposed soft internet restrictions on access to the global

OSS platform (GitHub) and that censorship on China’s domestic platform (Gitee) led to a

large and sustained drop in domestic collaboration. Along with restrictions, China has also

provided financial support for Gitee. These policies likely arise from concerns over economic

outcomes, information control, and software security—I focus on economic consequences.

First, I evaluate China strengthening its restrictions on foreign collaboration, which could,

in theory, coordinate Chinese firms to use and invest in domestic OSS. I “tax” Chinese

investment in web OSS based on the share of foreign contributions, up to $100 per hour—six

times the typical hourly wage of Chinese web developers. This simulated restriction proves

ineffective at promoting investment in domestic web OSS and reduces overall Chinese web

OSS investment by 3%. Due to the widespread use of OSS, I find that lost innovation

spillovers would raise global web development costs by $7 per dollar of disincentive and $2 in

China. The model does not guarantee this result; if the estimated public benefits from OSS

investment were more localized and larger, I find that restrictions would be more effective.

Second, I evaluate China strengthening its subsidies for domestic OSS investment. Since

OSS investment is rare, subsidies appear feasible:6 $100 for each of the 40,000 hours invested

6A detailed evaluation of specific mechanisms is beyond the scope of this article. Mechanisms include
GitHub or Gitee subsidies, tax credits (e.g., New York State Assembly, 2022), or changes to accounting
standards (e.g., Financial Accounting Standards Board, 2024). Conti, Gupta, Guzman, and Roche (2023)
and Hoffmann, Boysel, Nagle, Peng, and Xu (2024) show that direct rewards and indirect AI assistance for
OSS contributors, respectively, increase productivity but also affect the type of contributions.

4

into my sample’s web OSS in 2022 amounts to only $4 million. A Chinese subsidy of $100
per hour invested in domestic web OSS successfully increases Chinese web OSS investment

by 20%, especially in domestic OSS. Due to innovation spillovers, the subsidies cut global

web development costs by $11 per dollar of subsidy and $5 in China.

Third, in light of recent US policies targeted at China, such as the CHIPS Act (2022), a

shift in Chinese OSS policy could prompt a US response. To date, US OSS policies, like those

of most countries, focus on procurement and security.7 However, if the US were to match

China’s per-hour subsidies, I estimate that US firms would increase web OSS investment

by 16%, especially in domestic OSS. Since firms primarily use US-built OSS, global cost

reductions per dollar of subsidy would be three times greater than from China’s subsidies.

The effects of simulated policies are similar whether I hold web traffic fixed or allow firms

to compete on quality for consumers’ web traffic, though effects are somewhat larger when

firms can optimally adjust their websites’ quality in response to OSS policies. The clearest

conclusion from my results for OSS policy is its impact on firm costs. Statistically unclear

effects on consumer surplus reflect either a truly weak effect of OSS on website quality or

noise in my web traffic data. These are empirical findings, not guaranteed by the model.

Business stealing could either strengthen or weaken the impact of OSS policies in industries

where product quality is greatly damaged or improved by OSS.

Finally, to benchmark the size of US and Chinese subsidies, I simulate a global subsidy of

$100 per hour invested into any of the web OSS in my sample. Cost reductions from global

coordination are six times greater than from unilateral and domestic-focused subsidies in

the US and China, indicating that the latter can capture a substantial, though incomplete,

share of the global benefits from subsidizing OSS. Overall, I find that subsidies are relatively

cheap because OSS investment is rare, while their effects are large—especially when targeted

at OSS that is used the most—because OSS use is widespread.

For the web development industry alone, my simulations suggest that OSS policy could

have large effects. However, the contributors to web OSS in my sample are only around one-

fiftieth of all OSS contributors. This is not to suggest that I expect OSS policy outcomes

to be fifty times larger; the OSS I study are unusually popular and specific to one industry.

Rather, to the extent that my approach generalizes and aggregates across industries, my

results suggest that the stakes may be high for OSS policy on a broader scale.

My approach emphasizes some incentives and de-emphasizes others. In the private sector,

7Some US agencies favor OSS for procurement (e.g., Department of Defence, 2022), and there has been a
recent push to increase funding for OSS security (e.g., White House, 2024). The US also funds OSS-related
work overlapping with basic research (e.g., National Science Foundation, 2023).

5

I focus on incentives of firms, and in the public sector, on economic incentives of govern-

ments. Motivations of individual developers (such as career concerns) appear only indirectly

through residual labor supply curves, and I can speak to other justifications for government

intervention (such as national defense) only by bounding justifications within the scope of

my model. I focus on firms competing in product markets, conservatively holding fixed the

supply of developer labor and OSS contributions not matched to the firms in my data. Fu-

ture research that incorporates labor markets,8 upstream firms, or other incentives could be

useful for studying OSS policies that seem less justifiable based on my approach.

Related Literature. I primarily contribute to literatures on the economics of OSS, inno-

vation spillovers, and industrial policy.

Starting with Lerner and Tirole (2002), the OSS literature mainly focuses on individuals.9

In the theoretical literature, my work relates more to the model of Llanes and de Elejalde

(2013), which highlights why firms choose to use and invest in OSS when competing in a

product market. By building a richer model with more than two types of firms in different

countries, I discipline my assumptions with data and contribute a new toolkit for policy eval-

uation. To my knowledge, I am the first to estimate an empirical model of firm involvement

in OSS.10 In the empirical literature, studies of OSS contributions are common, but data on

OSS use are scarce. My website production estimates relate to those of Nagle (2018, 2019b),

who uses survey data on OSS use and Linux contributions to run value-added production

function regressions for US firms.11 By matching contributors to website-owning firms, I

create a novel dataset suitable for a new structural approach and policy simulations. In

doing so, I introduce a novel method for estimating hours spent on different OSS activities

and provide the first analysis of China’s domestic OSS platform.

Second, I contribute to the literature on innovation spillovers.12 At the core of my model

are stocks of knowledge capital in the tradition of Griliches (1979). Key challenges in this

8Work on how labor competition affects firm participation in OSS includes the theoretical model of Kumar
et al. (2011) and the more empirical work of Boysel et al. (2024).

9Early reviews include Lerner and Tirole (2005) and Von Krogh and Von Hippel (2006). Survey evidence
includes Lakhani and Wolf (2005) and Nagle et al. (2020). Prominent motivations include on-the-job work,
career concerns, intrinsic motivation, and reciprocal altruism.

10In a systematic literature review of firm participation in OSS, Li et al. (2024) categorize 25 publications
as Business & Economics. Most are case studies or reduced-form analyses. Two articles (Economides and
Katsamakas, 2006; Llanes and de Elejalde, 2013) present economic models, but neither is empirical.

11Hoffmann et al. (2024) use more aggregate data on OSS use and contributions, including for web OSS,
to estimate OSS replacement costs. A related literature measures the effects of OSS use (Dushnitsky and
Stroube, 2021) and investment (Conti et al., 2021; Wright et al., 2023, 2024) on entrepreneurial productivity.

12Bloom et al. (2019) reviews the literature from a policy-making perspective.

6

literature include defining capital and detecting “the path of the spillovers in the sands

of the data” (Griliches, 1992). In my setting, capital refers to a codebase, and I directly

measure spillovers as investment in OSS used by other firms.13 My estimates corroborate and

sharpen findings in the literature for the case of web OSS. Similar to Bloom, Schankerman,

and Van Reenen (2013), I find that introducing business stealing through product market

competition does not significantly dampen the large gains from innovation spillovers through

web OSS. Consistent with Grossman and Helpman (1991) and Coe and Helpman (1995), I

estimate high domestic returns from foreign investment in web OSS, and large opportunity

costs from restricting foreign collaboration.

Third, I contribute to the literature on industrial policy.14 Key challenges in this literature

include the endogeneity of observed policies and the external validity of remaining random

variation (Rodrik, 2012). My empirical model for the web development industry aligns with

recent work that addresses these challenges using economic theory, granular data, and insti-

tutional context. Closest are two pairs of articles that estimate empirical models of China’s

shipbuilding and automobile industries. Kalouptsidi (2018) and Barwick, Kalouptsidi, and

Zahur (2019) find limited benefits from costly shipbuilding subsidies. Barwick, Cao, and Li

(2021) report large consumer damages from local protectionism for automobiles, while Bai,

Barwick, Cao, and Li (2022) find significant innovation spillovers from foreign joint venture

requirements. By comparing restrictions and subsidies, I contribute to a debate dating back

at least to Hamilton’s (1791) “infant industry” argument: I also find weak support for strate-

gic trade policy in a particular industry, and highlight the potential benefits of industrial

policy that promotes innovation spillovers.

The literature on industrial policy for OSS is much smaller. Using a differences-in-

differences approach, Nagle (2019a) finds that a change in French procurement policy to favor

OSS increased French contributions. Other work, including a recent European Commission

report recommending subsidies and the creation of an OSS platform for the European Union

(Blind et al., 2021), typically relies on case studies or descriptive panel regressions. In a

high-level overview, Lerner and Schankerman (2010) urge caution about unintended costs

of government intervention but emphasize the need for more empirical research that is (i)

tailored to software development, (ii) aimed at government policy, and (iii) focused on the

role of firms. These are precisely the aims of this article.

13Starting with Trajtenberg (1990) and Jaffe et al. (1993), the most common approach to directly measur-
ing innovation spillovers uses patent citations. My approach is complementary, providing a more concrete
but less general measure for web development.

14Lane (2020) and Juhász et al. (2023) compare the recent literature with older empirical work.

7

2. Background

I begin by providing background on OSS, including recent policies in China, which motivate

my simulations in Section 7. My aim is not to argue that these policies have been highly

impactful so far, but to highlight the technical and legal tools available to policymakers that

allow for their continued expansion. Lastly, I describe the web development industry and

why it is a suitable setting for the rest of my empirical analysis.

2.1. Open Source Software

OSS is created by software developers collaborating across geographic and organizational

boundaries. The result is a wealth of computer programs that are (i) available under non-

restrictive licenses and (ii) central to most private codebases. A recent survey found that

96% of commercial codebases use OSS, and 77% of total code is OSS (Synopsys, 2024).

Other industry and academic reports similarly highlight the widespread use of OSS in private

codebases (e.g., Sonatype, 2020; Musseau et al., 2022).

Many developers contribute to OSS as part of their job. A survey by the Linux Foundation

and the Laboratory for Innovation Science at Harvard provides recent evidence (Nagle et al.,

2020). Among 570 contributors to widely-used OSS projects, 89% are employed full-time, of

whom 60% are encouraged to contribute as part of their job; 81% of those encouraged are paid

for their time contributing. Out of 10 common motivations, the most frequently mentioned

in respondents’ top three is the need to contribute features or fixes to OSS they use at work.

This is not surprising, as keeping modifications in-house often leads to incompatibilities with

OSS updates. However, the next most frequent motivations relate to learning, enjoyment,

and reciprocity—developers gain more from contributing than use-value alone.

Compared to the widespread use of OSS, government interventions are often indirect

and limited. The Center for Strategic and International Studies (CSIS) publishes a survey of

national OSS policies (Lostri et al., 2023). Among 539 policies approved by 108 governments,

the CSIS identifies 45% that explicitly prioritize OSS in public procurement, while most

others focus on education and studies about OSS. The two US policies approved in 2022

are a Department of Defence (2022) memorandum favoring OSS for procurement and a

White House (2022) convention about OSS security. The US also funds OSS-related work

overlapping with basic research (e.g., National Science Foundation, 2023). China’s OSS

policies are broader and more direct. Its last two Five-Year Plans (2016 and 2021) instruct

agencies to promote OSS communities directly.15 The Ministry of Industry and Information

15Section 1 quotes the latest Plan from 2021. In 2016, the “Plan for S&T Innovation” and the “Plan for

8

Technology (MIIT) is particularly involved, providing financial support for China’s domestic

OSS platform.

Worldwide, nearly all OSS collaboration is on one platform: GitHub.16 Founded in 2008

and acquired by Microsoft in 2018, GitHub enhances a code versioning system called “Git”

with bug tracking, code review, and social networking. GitHub reports over 100 million users

(GitHub, 2024), though this likely includes many inactive users (Kalliamvakou et al., 2016)

and those using the platform for non-OSS features, such as private projects. In Appendix A,

I combine comprehensive public datasets on GitHub activity and identify around 3 million

active contributors to public projects per month in 2022. Using self-reported locations, I

estimate about 400,000 from the US and 130,000 from China.17

Like many of the world’s largest websites with social networking features, GitHub has

a Chinese counterpart: Gitee. Created in 2013 by Shenzhen Aosi Network Technology,

also known as OSChina, Gitee has been officially backed and financially supported by the

Chinese state since 2020 (MIIT, 2020). Gitee reports over 12 million users (Gitee, 2024).

Unlike GitHub, there is no comprehensive dataset of all public Gitee activity. In Appendix A,

I use Gitee’s public-facing interface to create such a dataset, identifying around 75,000 active

contributors per month in 2022. This amounts to 2.5% of GitHub’s OSS community and

half the size of GitHub’s OSS community in China.

2.2. Restrictions in China

It is unusual for a global website with social networking features to be more popular in China

than its domestic counterpart. In fact, it is unusual for a website like GitHub not to be fully

blocked by the collection of government policies known as the Great Firewall (GFW).18

Instead, I provide empirical evidence that the GFW reduces the quality of internet con-

nections between China and GitHub. I collect data from three sources that regularly test

connectivity to popular websites from China, and in Figure 1, plot their success rates for

GitHub. For a typical website, the lines are nearly flat at 100%. Fully blocked websites are

the Development of Strategic Emerging Industries” both recommend supporting OSS communities.
16Using comprehensive Ecosyste.ms data (Nesbitt, 2024) on the 2.5 million OSS packages with at least

2 versions from 2014 to 2023 and a repository URL, I find that 95% are on GitHub, 3% are split between
Gitee, GitLab, and Bitbucket, and less than 0.1% are on SourceForge. Many of the remaining 2% use
project-specific websites. GitLab and Bitbucket mainly compete with GitHub’s non-OSS features. Many
Gitee repositories, discussed below, also have a GitHub repository, often listed as the primary one.

17I discuss geocoding and users who do not self-report in Appendix A. Below, I validate the use of self-
reported locations by comparing them with locations based on IP addresses.

18Full blocks of GitHub in China are rare and brief—a block in January 2013 (Protalinski, 2013) lasted
only a couple of days. Other global social networking sites like Facebook and Twitter are fully blocked.

9

Figure 1: Success Rate of Visits to GitHub from China

2019 2020 2021 2022
0%

20%

40%

60%

80%

100%
Su

cc
es

sfu
l V

isi
ts

to
 G

itH
ub

 in
 C

hi
na

Open Observatory of Network Interference
Censored Planet
GreatFire

This figure reports the quarterly success rate of visits to GitHub from China, excluding quarters with fewer
than 10 attempted visits. The definition of success varies by source. For the Open Observatory of Network
Interference (Filasto and Appelbaum, 2012), I consider both HTTP and HTTPS tests, discard failed tests,
and define success as no confirmed blocks or anomalous measurements. For Censored Planet (Sundara Raman
et al., 2020), I consider only HTTPS probes, and define success as no unexpected outcomes on their data
dashboard. For GreatFire (greatfire.org), I discard false positives with empty replies, discard those with
unsuccessful paired tests from within the US, and define success as a successful response code.

flat at 0%. Across all sources, the success rate for GitHub drops in 2021. Although GFW

changes are rarely announced, I do not see a concurrent drop for other popular websites,19

suggesting a deliberate policy shift to restrict GitHub access from within China.

A natural question is whether Chinese developers use GitHub less, now that direct access

is more difficult. In Figure 2, I plot two measures of monthly active GitHub contributors in

the US and China: one based on self-reported locations and the other on Internet Protocol

(IP) addresses. For the IP-based measures, I use GitHub’s Innovation Graph dataset, which

provides country-quarter statistics back to 2020. The upward trend in the self-reported

line for China does not change in 2021, suggesting that restricting GitHub access did not

significantly affect China’s contributions.

Reassuringly, the US line based on IP addresses is nearly identical to its self-reported

counterpart. The IP-based line for China also tracks its self-reported counterpart through

2020, but begins to decline in 2021, just as GitHub restrictions intensified. By 2023, a 70,000-

contributor gap between China’s self-reported and IP-based lines likely reflects increased use

19I also find no drop for other countries. For other websites, I collect OONI and GreatFire data for all
websites from Section 3 and create the same plot for the 203 with at least one test from both sources. The
closest other drop is for signal.org, the website of an encrypted messaging app, which was blocked by the
GFW in March 2021 (Associated Press, 2021). I am only aware of one other large change in 2021, when in
November the GFW began blocking fully encrypted traffic (Wu et al., 2023).

10

https://greatfire.org/
https://signal.org/

Figure 2: Monthly Active Contributors on GitHub in the US and China

2019 2020 2021 2022
0

50,000
100,000
150,000
200,000
250,000
300,000
350,000
400,000
450,000

M
on

th
ly

 A
cti

ve
 U

S
Co

nt
rib

ut
or

s

GitHub
restrictions
intensify

0

50,000

100,000

M
on

th
ly

 A
cti

ve
 C

hi
ne

se
 C

on
tri

bu
to

rs

In the US
(self-reported)
(IP addresses)

In China
(self-reported)
(IP addresses)

This figure reports two measures of monthly active GitHub contributors in the US (blue, left) and China (red,
right), averaged by quarter. Active contributors are those who author a commit, issue, pull request (PR),
review, or comment on a public GitHub repository. I describe my GitHub data and how I use self-reported
locations (solid lines) in Appendix A. I scale country shares among self-reporting contributors by the total
number of contributors, assuming equal rates of self-reporting across countries. I also compute a measure
based on IP addresses using GitHub’s Innovation Graph dataset, which is at the country-quarter level, and
dates back to the first quarter of 2020. I scale its count of PRs from US and Chinese IP addresses by my
own quarterly estimates of PRs per active US and Chinese contributors who do self-report (dashed lines).

Figure 3: Monthly Active Contributors on Gitee

2019 2020 2021 2022
0

25,000

50,000

75,000

100,000

M
on

th
ly

 A
cti

ve
 G

ite
e C

on
tri

bu
to

rs

Gitee is
backed by
the MIIT

GitHub
restrictions
intensify

Gitee is
briefly
frozen

Gitee contributors
(New Year's)

This figure reports the number of monthly active contributors to public Gitee repositories. Active contribu-
tors are those who author a commit, issue, pull request, review, or comment on a public Gitee repository. I
describe my Gitee data in Appendix A. Januaries and Februaries, which are notably affected by New Year’s
celebrations in China, are shaded in a lighter red.

11

of virtual private networks (VPNs), which, when used to bypass the GFW, register as foreign

IP addresses.20 Software developers in China are familiar with VPNs and value GitHub, so

it is unsurprising that they are willing and able to circumvent new GFW restrictions.

Another natural question is whether Chinese developers began using Gitee more as it

gained state support and GitHub became harder to access. In Figure 3, I plot the number of

monthly active Gitee contributors. Growth sped up around Gitee’s financial support from

the MIIT in April 2020 and heightened GitHub restrictions in January 2021, but the absence

of sharp jumps makes interpretation difficult. In May 2022, however, Gitee faced a major

censorship event. The company “didn’t have a choice” but to temporarily freeze all OSS

projects for manual review and require developers to affirm that future OSS projects would

not violate Chinese law (Yang, 2022). In my data, this event coincides with a sharp drop of

25,000 contributors and a reversal of Gitee’s growth.

Due to VPN use, GFW restrictions seem to have had less impact on OSS collaboration

than Gitee censorship. In 2017, the MIIT banned unapproved VPNs (MIIT, 2017), and while

there have been several crackdowns, VPN use remains widespread (Chandel et al., 2019),

despite recent slowdowns of popular VPNs (The Economist, 2024). However, VPN use can

have consequences; in 2023, police confiscated around $140,000 in earnings from a Chinese

developer, claiming he used an unauthorized VPN to bypass the GFW (The Guardian, 2023).

The developer was paid to contribute to web development OSS on GitHub, managed by a

foreign company.

I see China’s restrictions on VPN use and OSS collaboration as evidence that its policy-

makers have the technical and legal infrastructure to extend and strengthen their existing

OSS policies. So far, some restrictions appear motivated by political censorship, while subsi-

dizing Gitee aligns more closely with the latest Five-Year Plan’s goal of supporting domestic

OSS. In this article, I aim to assess the economic effects of increased public sector involve-

ment, particularly from China.

2.3. Web Development

In the rest of my empirical analysis, I focus on OSS for web development to address a key

challenge in studying OSS: measuring use. Suppose we wanted to study OSS policy for

large language models. It is easy to visit the GitHub page for Alibaba’s OSS competitor

20As a result, for foreign countries through which Chinese developers route their VPN traffic when bypass-
ing the GFW, we should expect an increase in the IP-based line, relative to the self-reported one. This is
exactly what we see in similar plots for Hong Kong, South Korea, and Singapore—all desirable VPN server
locations for Chinese developers due to their geographic proximity to China.

12

to ChatGPT, Qwen (github.com/QwenLM). Most of its contributors work, unsurprisingly,

at Alibaba. There is plenty of GitHub data on OSS contributions and who makes them.

However, there is very little public data on which firms value Qwen enough to use it in

production.21 The lack of direct data on who uses OSS makes it difficult to measure the

value of OSS—and hence the economic effects of OSS policy—using revealed preferences.

Web development is an exception. Because of how websites work, it is straightforward

to visit a website, download its source code, and, with some technical expertise, identify the

software it uses.22 Web development is a major part of OSS—JavaScript, the most popular

language for OSS development (GitHub, 2023b), is primarily used for building websites.

Beyond being a convenient empirical setting for studying OSS, web development is a

large and high-tech industry. In the US alone, $20 billion in annual wages are paid to

around 186,000 web developers (Bureau of Labor Statistics, 2022) to create and maintain

the technical structure of websites. Using online resume data, which I describe in the next

section, I estimate that there are 926,000 web developers in China and 8 million worldwide,

about 13% of all software developers.

3. Data

I construct a panel of firms that operate the world’s most visited websites; technical details

are in Appendices A to H. I identify the software these firms use to build their websites and

how they allocate web developer labor to OSS and in-house investment. Then, I document

patterns of how firms use and invest in OSS at the country level, describe my firm-level

sample, and document firm-level patterns that will inform my model.

3.1. Panel Construction

I start with homepages of the 10,000 most visited websites in each month from 2014 to 2022.

In Appendix B, I describe my historical data on homepages, which are archived by Common

Crawl. Global website traffic ranks are from Alexa.23 In Appendix C, I convert ranks into

traffic by following Chevalier and Goolsbee (2003) and fitting a power law on a shorter panel

21Alibaba claims over 90,000 corporate users (Jiang, 2024). Package download statistics provide some
insight into downloads by region but are noisy and rarely identify specific firms. Nagle et al. (2022) collect
anonymized OSS usage data from software composition analysis companies but also cannot identify firms.

22Others have used this feature to value OSS servers (Greenstein and Nagle, 2014; Murciano-Goroff et al.,
2021, 2024; Ackermann and Greenstein, 2024) and web OSS in aggregate (Hoffmann et al., 2024).

23Alexa, an Amazon subsidiary, published a daily top 1 million list until its discontinuance in 2023. Alexa’s
traffic data primarily came from its toolbar extension, along with other undisclosed extensions and traffic
meters installed by website operators (Pochat et al., 2018; Shiller et al., 2018).

13

https://github.com/QwenLM

from 2018 to 2020 (from Johnson et al., 2023) with the traffic behind Alexa ranks. I assign

websites to 80 markets with Similarweb categories, designed for use by website operators.24

Detecting Software. In Appendix D, I identify the software behind each archived home-

page by analyzing its source code and other browsing data with Wappalyzer, a tool commonly

used by companies to generate business leads.

I focus on three key parts of a website’s technical structure: its backend, JavaScript, and

user interface (UI) frameworks.25 Starting with Greenstein and Nagle (2014), most research

on web OSS has centered on a fourth part, web servers, which play a critical role in global

internet infrastructure. While I also collect data on servers for comparison, they are not my

focus because of relatively little OSS activity on popular servers during my sample period

and increasing use of externally-managed alternatives with limited data.26

I focus on the 27 frameworks in Appendix Table D1 that account for 99% of usage for each

of the three website parts. All end up being OSS on GitHub. If no framework is detected for

a website part, I assume the website uses a non-OSS alternative, which I label as “in-house.”

When Common Crawl fails to archive a homepage, I assume its software remains unchanged

from the previous month. From my final sample, I discard 8% of websites—typically smaller

ones—without a valid archived homepage.

Matching. I manually match each detected OSS framework to its GitHub project page,

also known as a repository. None of the 27 frameworks that I focus on have active Gitee

repositories. Using the GitHub data described in Appendix A, I collect all contributions to

these frameworks, made by a total of 223,371 contributors. For comparison, I estimate that

the monthly active contributors in my sample represent 2% of those contributing to GitHub

repositories of all active OSS packages.27

Next, I attempt to match each contributor to a LinkedIn profile, using employment infor-

mation on their GitHub or Gitee profiles if unsuccessful. My LinkedIn data is a consolidated

24Similarweb specializes in web analytics. In my data, the most trafficked markets are “Search Engines,”
“TV, Movies & Streaming,” “Social Networks & Online Communities,” “News &Media,” and “Marketplace.”

25Backend frameworks (e.g., Rails) handle server-side logic. JavaScript frameworks (e.g., React) handle
client-side interactions. UI frameworks (e.g., Bootstrap) provide styles for web interfaces.

26In my sample, Wappalyzer-detected use of managed alternatives (e.g., Azure and Acquia) grew from 3%
in 2014 to 17% in 2022, likely an understatement due to server detection challenges. Of the 50% of website-
years where Wappalyzer detects an OSS server, 93% use Apache or NGINX. Only a third of commits to
Apache and NGINX occurred during my sample, compared to two-thirds for the web frameworks I focus on.

27In each month from 2014 to 2022, there are around 4,000 active contributors to the 27 OSS web frame-
works that I focus on. My 2% number compares 4,000 with the number of GitHub users active on any
repository linked in the comprehensive data on OSS packages that I describe in Footnote 16.

14

collection of 618 million individual profiles and 62 million company profiles, gathered through

multiple scrapes of public information from 2016 through 2022. Profiles include full employ-

ment histories. When possible, I match firms listed on contributor profiles to information

from LinkedIn, Orbis, Pitchbook, Compustat, Lightcast, and WHOIS website records. These

sources often provide headquarter locations and, crucially, often allow me to identify which

websites each firm operates.

Contributor and firm matching both follow three-step processes, which I design in Ap-

pendix E to be practical while accurately matching most contributions, especially those

from China, where matching can be more challenging.28 First, I conservatively match on

clean and unique identifiers, such as contributors’ emails and LinkedIn-assigned company

numbers. Second, I manually fill in missing matches for top contributors and their employ-

ers. Third, using features from these matches as training data, I apply regularized gradient

boosting (Chen and Guestrin, 2016) to predict the remaining matches for smaller contrib-

utors and less prominent employers. In Appendix F, I train similar classifiers to impute

missing markets for some websites and missing countries for some firms and contributors.

Measuring Investment. Matching contributors to their website-owning employers allows

me to measure the OSS investment from firms in my sample. My LinkedIn data also provides

the total number of web developers employed by these firms. A strength of my data is the

wealth of information about OSS contributions; the challenge is placing different types of

contributions on the same scale. A weakness is the lack of detailed information about in-

house investment beyond the total number of employed web developers.

OSS collaboration involves much more than writing code. In my data, developers con-

tribute by authoring commits, issues, pull requests (PRs), reviews, and comments.29 Much

of the OSS literature focuses on individual activities—typically commits—or converts lines

of code into hours and dollars using back-of-the-envelope calculations.30 Instead, in Ap-

pendix G, I develop a simple data-driven approach tailored to the software in my data that

28I describe how I adjust for China’s low LinkedIn penetration rate below and in Appendix H. This
adjustment affects my measure of in-house investment. OSS investment comes from contributor matching.
To improve the Chinese match rate for contributors, I incorporate Chinese social network identifiers and
Gitee information into the matching procedure described in Appendix E.

29I describe contribution types in Appendix A. Commits are changes or updates to a codebase. PRs are
bundles of commits with a proposal for incorporation. Reviews evaluate code in PRs. Issues are bug reports,
feature requests, questions, or other tasks. Comments are follow-ups on PRs or issues.

30Nagle (2019a), Robbins et al. (2021), Blind et al. (2021), and Hoffmann et al. (2024) convert lines of code
(LOC) into hours using the Constructive Cost Model (COCOMO) II (Boehm, 1984; Boehm et al., 2009), a
typical version of which estimates person-hours with α× LOCβ using pre-calibrated values of α and β.

15

Figure 4: Hours Invested into Web OSS by Contribution Type

Pull Requests
(43%)

Issues
(25%)

Comments
(20%)

Commits
(10%)

Reviews
(2%)

This figure reports how much pull requests (PRs), issues, comments, commits, and reviews contribute to
estimated hours invested into the web OSS in my sample. I describe contribution types in Appendix A and
estimation in Appendix G. Commits are changes or updates to a codebase. PRs are bundles of commits
with a proposal for incorporation. Reviews evaluate code in PRs. Issues are bug reports, feature requests,
questions, or other tasks. Comments are follow-ups on PRs or issues.

accounts for non-code contributions.

The key requirement for my new approach is an estimate of how many hours per month

OSS contributors (similar to those in my sample) spend on OSS work. In a recent survey

of top OSS contributors (Nagle et al., 2020), those actively contributing to web OSS report

spending an average of 52 hours per month on OSS. At the contributor-month level, I regress

this number on counts of each contribution type made by the contributors in my sample to

all OSS.31

The coefficients in Appendix Table G1 are “hedonic” estimates of hours per contribution

type, which I use to place all contributions in my data on the same scale: hours. Figure 4

decomposes the 592,000 estimated hours of OSS investment in my sample. Commits account

for only 10% of hours once other contribution types, especially PRs, are included, as PRs

bundle multiple proposed commits.32 Since OSS survey and contributions data are widely

available, I am optimistic that my approach can be used to derive more comprehensive and

context-specific measures of OSS investment in other settings.

For in-house investment, the challenge is a lack of data. The best information I have on

how much labor each firm allocates to web development is the total number of employed web

developers from my LinkedIn data. In Appendix H, I identify web developers and adjust for

country-level, time-varying LinkedIn penetration rates.33 To convert web developer counts

into hours, I scale by country-level measures of average web developer workweeks from recent

large-scale surveys (Stack Overflow, 2019, 2020). Finally, I subtract the hours invested into

in-sample web OSS to derive my measure of in-house investment.

3152 hours was for contributions to all OSS, not just web OSS. I differentiate between contributors who
ever review others’ public code and those who do not, which I find to be a particularly predictive variable.

32This does not imply that empirical analysis of commits alone understates OSS investment by an order
of magnitude. Commits are correlated with other activity types, especially PRs. If the same regression were
run with only commits, its coefficient would be larger, reflecting the activity correlated with each commit.

33Estimating a penetration rate for web developers requires assumptions. I assume its ratio to the rate
for all workers in a country is the same across countries, and estimate this ratio for the US using BLS data.

16

Table 1: Country-Level Web OSS Investment and Use, 2014 to 2022

Web OSS Investment Web OSS Use

Percent of Total Per Web Developer-Hour Percent of Total Per Potential Use

1. US 31.3% 1. Netherlands 0.0083% 1. US 40.8% 1. India 16.8%
2. China 12.9% 2. US 0.0055% 2. China 10.7% 2. Canada 14.7%
3. Germany 6.2% 3. Germany 0.0046% 3. India 6.1% 3. UK 13.8%
4. Japan 6.0% 4. Canada 0.0037% 4. UK 5.7% 4. US 13.3%
5. UK 4.9% 5. UK 0.0037% 5. France 4.7% 5. China 11.8%
6. Canada 3.4% 6. France 0.0023% 6. Russia 2.7% 6. Netherlands 11.5%
7. India 3.2% 7. Japan 0.0021% 7. Germany 1.4% 7. France 11.3%
8. France 3.0% 8. Russia 0.0006% 8. Japan 1.4% 8. Germany 10.3%
9. Russia 2.5% 9. China 0.0004% 9. Canada 1.1% 9. Russia 9.0%

10. Netherlands 2.5% 10. India 0.0001% 10. Netherlands 0.7% 10. Japan 6.1%

↪→ Combined 75.9% ↪→ Combined 75.3%

This table reports patterns of web OSS investment and use from 2014 to 2022 for the top 10 countries,
ranked in the first column by their total investment into web OSS in my sample. The second column
re-ranks these countries by their web OSS investment as a percentage of the total hours worked by web
developers in each country. The third column ranks the countries by their top websites’ share of world-
wide web OSS use, while the fourth column ranks them by their web OSS use relative to the number of
potential uses, calculated by multiplying the number of top websites owned by firms in a country by three,
corresponding to the three considered website parts: backend, JavaScript, and user interface frameworks.

3.2. Country-Level Patterns

On the left of Table 1, I rank the top 10 countries by their investment into the 27 web OSS

in my data. The overall pattern aligns with earlier research on the geography of GitHub

contributions (e.g., Gonzalez-Barahona et al., 2008; Wachs et al., 2022). The clear leader is

the US, followed by China. Relative to total hours worked by each country’s web developers,

the US and many European countries tend to invest in web OSS more intensively, while

China and India tend to invest less.

On the right, I re-rank the same countries by how much their top websites use the

same web OSS. I assign websites to countries based on the headquarters of their firms.

Again, the US is the clear leader, with China in second. However, there is less cross-country

variation. Compared to concentrated investment, dispersed use suggests that benefits of

OSS investment may largely flow from the US to the rest of the world.

3.3. Firm-Level Sample Restrictions

I construct my firm-level panel at a monthly frequency, as this is the default frequency for

most of my data sources. However, website software rarely changes, and some data, such as

17

a significant portion of LinkedIn employment dates, are reported annually. Because of this,

I aggregate to a yearly frequency in the rest of my empirical analysis. I keep each website’s

earliest software in a given year, and sum monthly traffic and investment to a yearly level.

In my firm panel, I apply three restrictions to discard low-quality and less-relevant data.

Since online resume data can conflate employment with education, I exclude firms with any

websites in the education and science Similarweb category. To focus on firms that genuinely

develop their own websites, I also discard firm-years with no employed web developers on

LinkedIn. The restricted sample is an unbalanced panel of 4,135 firms operating 6,392

websites over 9 years, totaling 18,895 firm-years and 28,292 website-years. About 15% of

firms and websites—typically small ones—churn in and out of the sample each year.

I do not discard any aggregate information about OSS investment from outside the firms

in this sample. Doing so would understate the size of OSS codebases. Instead, in the rest of

my empirical analysis, I treat OSS investment outside my restricted sample as exogenous.

3.4. Firm-Level Patterns

In the top panel of Figure 5, I plot the relationship between a firm’s web traffic and its

labor allocated to web OSS and in-house investment. The binscatters are on a log scale

and slope upward—larger firms invest proportionally more in both OSS and in-house work.

However, OSS investment is four orders of magnitude lower than in-house investment into

web development. A typical firm in my sample invests only 1-1,000 hours per year into top

web OSS, but a modest 50 web developer employees equates to around 100,000 hours of

annual in-house investment.

Since larger firms invest more, OSS investment is concentrated. Of the web OSS in-

vestment I attribute to in-sample firms, 43% comes from the top 10. However, even among

smaller firms, small OSS investments are not uncommon. Across firm-years, 34% invest at

least a small amount into any in-sample web OSS. In contrast, OSS usage is widespread and

far less concentrated, with 41% of firm-years using in-sample web OSS in production. In the

bottom panel of Figure 5, I find that web OSS use does not vary much with firm size.

Firms favor specific OSS. In Figure 6, I show that both investment and use are 1.4 to 1.8

times more likely for highly developed OSS with above-median overall investment and for

domestically developed OSS.34 If a firm already uses or invests in an OSS, it is even more

likely—3.3 times more—to invest in or use it concurrently.

34I weight each firm-year-OSS combination by the share of hours invested in the OSS by contributors in
same country as the firm. Manually classifying the home country of each OSS project’s lead maintainer gives
a slightly higher relative likelihood of 1.9 times for investment and about the same for use.

18

Figure 5: Web Traffic versus Web Development Investment and OSS Use

1

10

100

1,000

Ye
ar

ly
 O

SS
 H

ou
rs

10K

100K

1M

10M

In
-H

ou
se

 H
ou

rs

OSS In-house

100K (#10,000) 1M (#1,000) 10M (#100) 100M (#10) 1B (#1)
Daily Visitors (Rank)

0%

25%

50%

75%

100%

Us
e A

ny
 W

eb
 O

SS

For each bin of traffic to a firm-year’s websites (on a log scale), the top panel reports the hours the firm
invests into the web OSS in my sample (green circles, left) and in-house web development (purple squares,
right), averaged across firm-years (also on a log scale). The bottom panel reports the percentage of firm-years
in each bin that use one of these web OSS in production. The left bin contains the worst web traffic rank in
the sample, and the right contains the best: Google.

Figure 6: Relative Likelihoods of Web OSS Investment and Use

Invest in a Specific Web OSS Use a Specific Web OSS
0×

1×

2×

3×

4×

Re
lat

iv
e L

ik
eli

ho
od

Highly
Developed

OSS
(1.5×)

Highly
Developed

OSS
(1.4×)

Domestically
Developed

OSS
(1.8×)

Domestically
Developed

OSS
(1.5×)

User
(3.3×)

Investor
(3.3×)

This figure reports conditional shares of firm-year-OSS combinations where the firm invests in (left group)
or uses (right group) the web OSS in my sample, relative to unconditional shares. Highly developed OSS
are those with above-median total investment. The domestically developed OSS bars are weighted by the
share of hours invested in the OSS by firms or other contributors in the same country as the firm. Users are
firms currently using the OSS in production, and investors are those currently investing in the OSS.

19

Lastly, investment and use are also persistent: if a firm invested in or used a web OSS

last year, it is 14 and 38 times more likely, respectively, to do so again the following year.

Firms favoring OSS that is (i) highly developed, (ii) domestically developed, (iii) self-made,

and (iv) previously invested in or used will feature prominently in my model as reflecting

(i) public, (ii) localized, (iii) private, and (iv) persistent benefits of OSS investment.

4. Model

I model private incentives for providing and using OSS in the web development industry.

Though I focus on firms competing for web traffic, not developer labor, developer motivations

still influence each firm’s residual labor supply. Rather than strictly defining “firm” versus

“worker” decisions, I model their joint incentives but use “firm” for simplicity.

Each year t, firms f ∈ Ft ⊂ F choose which software to use to build their websites

j ∈ Jft ⊂ Jt and how much labor to invest in software capital stocks. Firms can use and

invest in different OSS frameworks s ∈ OSt and in-house software s = f . Their choices affect

web development costs through wages and website quality through a production function.

After firms make choices, consumers of types i ∈ It choose which websites to visit based on

quality, firm country, and content language. Firms then receive profit—revenue from traffic

minus labor costs—and consumers receive utility. Firms are myopic, but persistence arises

from capital accumulation, switching costs, and autocorrelated unobservables.

4.1. Website Supply

Each year t, firm f ∈ Ft is endowed websites j ∈ Jft. Websites have parts p ∈ P . For each

part, I take as given the set of OSS frameworks OSpt ⊂ OSt that could be used for that part.

In my data, there are |P| = 3 parts (backend, JavaScript, and user interface frameworks),

and by t = 2022, there are |OSt| = 27 major web OSS frameworks in Appendix Table D1.

For each website and part, the firm makes a discrete choice of software sjpt ∈ OSpt∪{f}
between using one of the relevant OSS frameworks or in-house software. The firm can also

choose to invest web developer labor ℓfst ≥ 0 into improving each software s ∈ OSt ∪ {f},
including software that it does not use in production.35 Labor improves software capital Kt,

which I define below. In total, there are |OSt| + |Ft| different software, but each firm can

only use and invest in |OSt|+ 1: all OSS and its own in-house software.

Collect the firm’s choices of software across parts in sjt = {sjpt}p∈P and across websites

in sft = {sjt}j∈Jft
. Collect its choices of labor across software in ℓft = {ℓfst}s∈OSt∪{f}. In

35Developers may contribute to OSS not used in production because they value OSS work as an amenity.

20

total, the firm makes |sft| = |Jft| × |P| discrete choices of software and |ℓft| = |OSt| + 1

continuous choices of labor to maximize its profit:

max
sft, ℓft

{ ∑
j∈Jft

RjtQjt(ξt)

︸ ︷︷ ︸
Revenue from traffic

−
∑

s∈OSt∪{f}

Wfst(sft, ℓft,Kt)ℓfst

︸ ︷︷ ︸
Cost of labor

}
s.t. ξjt = Ξfjt(sjt,Kt)

︸ ︷︷ ︸
Quality production

. (1)

Web traffic Qjt(ξt) depends on the set of potentially all websites’ quality ξt = {ξjt}j∈Jt ,

produced by a production function: ξjt = Ξfjt(sjt,Kt). Web traffic generates Rjt, marginal

revenue net of marginal costs.36 Profit is revenue minus the cost of web developer labor,

determined by a wage function: Wfst(sft, ℓft,Kt).

Software Capital. For notational simplicity, I allow both the quality and wage functions

to depend on the set of potentially all software capital, and suppress its dependence on labor:

Kt =
{
{Kft}f∈Ft︸ ︷︷ ︸

Private
capital

, {Kst}s∈OSt︸ ︷︷ ︸
OSS

capital

, {Kcst}c∈C, s∈OSt︸ ︷︷ ︸
Country-specific OSS
capital components

, {Kfst}f∈F , s∈OSt︸ ︷︷ ︸
Firm-specific OSS
capital components

}
. (2)

Not all of these capital stocks affect each quality and wage function. Before making this

explicit by parameterizing these functions, I define each capital stock. First, each firm f ∈ Ft

has a private capital stock Kft, created by its total investment Lft = ℓfft +
∑

s∈OSt
ℓfst,

37

which depreciates at a rate of δP ∈ [0, 1] as code becomes obsolete:

Kft =
(
1− δP

)
Kft−1 + Lft. (3)

Second, each OSS s ∈ OSt has a public capital stock Kst, created by all firms’ investment

in the OSS, which depreciates at a potentially different rate of δO ∈ [0, 1]:

Kst =
(
1− δO

)
Kst−1 +

∑
f∈Ft

ℓfst. (4)

The model’s central externality arises from the innovation spillovers in the sum over firms.

36Holding Rjt fixed is an empirical simplification due to limited data on website revenue, except for public
firms. With more data, the model could be extended to let Rjt = Rjt(sjt,Kt) depend on software and
capital, and also on endogenous prices in other industries where product prices are nonzero and observed.

37Kft could alternatively be modeled as the discounted sum of only in-house investment ℓfft. Since ℓfft
is orders of magnitude larger than OSS investment (Section 3.4), Kft will be numerically nearly identical
either way. My chosen model of Kft ends up being more convenient when I fix Lft in Section 5.

21

Public benefits of OSS investment, however, depend on who contributes. To keep track of

how OSS investment from a specific country or firms benefits some firms more than others,

I rewrite (4) by partitioning it into components Kcst contributed by each country c ∈ C and

sub-components Kfst contributed by each firm f ∈ Fc:

Kst =
∑
c∈C

Kcst, (5)

↪→ Kcst =
∑
f∈Fc

Kfst, (6)

↪→ Kfst =
(
1− δO

)
Kfst−1 + ℓfst. (7)

Developer Wages. To invest labor into different software capital stocks, the firm pays

different wages, which I parameterize as follows:

logWfst(sft, ℓft,Kt) = Devfst(ℓft,Kt)︸ ︷︷ ︸
“Development”

component

+
∑
j∈Jft

Qjt

Qft

∑
p∈P

αpOpsfjpt(sjpt,Kt)︸ ︷︷ ︸
“Operations”
component

+ ωW
ft︸︷︷︸

Firm-year
fixed effect

. (8)

I name the two components after the “DevOps” philosophy in software engineering, which

distinguishes between development (i.e., improving software) and operations (i.e., maintain-

ing software in production). I parameterize the development component to rationalize firms’

labor choices ℓft. I include a residual labor supply elasticity η, characteristics of the software

being improved, and a switching cost κL:
38

Devfst(ℓft,Kt) =
1
η
logLft︸ ︷︷ ︸
Log total
labor

+ γ ′
L X

W
fst(Kt)︸ ︷︷ ︸
Software

characteristics

+ κL 1ℓfst−1=0︸ ︷︷ ︸
Labor

switching

+ ωL
fst︸︷︷︸

Development
unobservable

. (9)

I parameterize the operations component to rationalize firms’ software choices sft. In

(8), I weight by traffic and importance parameters αp when aggregating across each website

and part.39 To rationalize a firm’s choice of software sjpt for a specific website and part, I

include the same software characteristics and a second switching cost κS:

Opsfjpt(s,Kt) = γ ′
S X

W
fst(Kt)︸ ︷︷ ︸
Software

characteristics

+ κS 1s ̸=sjpt−1︸ ︷︷ ︸
Software
switching

+ ωS
jst︸︷︷︸

Operations
unobservable

. (10)

38To keep notation simple, I suppress the dependence of wages on past choices.
39I suppress the dependence of Qjt = Qjt(ξt) and Qft =

∑
j∈Jft

Qjt(ξt) on ξt.

22

I select software characteristics to explain the firm-level patterns of investment and use

from Section 3.4. OSS investment scales with total investment, and firms tend to invest in

and use highly developed, domestically developed, and self-made OSS:40

XW
fst(Kt)

′ = 1s∈OSt

[
1︸ ︷︷ ︸

OSS
indicator

, logKft︸ ︷︷ ︸
Log private

capital

, logKst︸ ︷︷ ︸
Log OSS
capital

, Kc(f)st/Kst︸ ︷︷ ︸
Domestic
share

, 1Kfst>0

[
1︸ ︷︷ ︸

Firm-specific
extensive margin

, logKfst︸ ︷︷ ︸
Intensive
margin

]]
. (11)

Parameters in γL and γS capture (i) baseline costs of investing in and using OSS versus

in-house software, (ii) how these costs vary with private capital, (iii) public benefits of OSS

investment, (iv) localization of these benefits, and (v) private benefits of OSS investment.

Private and localized benefits arise because firms contribute in ways that serve their needs

and those of similar firms. To assess policies more specific than those in Section 7, additional

characteristics could be incorporated to better capture specific needs.41

Finally, I include firm-year fixed effects ωW
ft in (8) and autocorrelated unobservables ωL

fst

and ωS
jst in (8) and (10). These capture components of web developer wages not explained

by the model, and, along with switching costs, help rationalize the observed persistence of

firms’ choices. I discuss their distribution and estimation in Section 5.

Website Quality. I parameterize the production function for website quality ξjt with the

log of private capital and an importance-weighted average of OSS use across website parts:

Ξfjt(sjt,Kt) = βP logKft︸ ︷︷ ︸
Log private

capital

+ βS

∑
p∈P

αp 1sjpt∈OSt︸ ︷︷ ︸
Importance-weighted

use of OSS

+ ωΞ
m(j)t︸ ︷︷ ︸

Market-year
fixed effect

+ ωΞ
jt + εΞjt︸ ︷︷ ︸
Quality

unobservables

. (12)

The parameter βP captures how private capital affects website quality, while βS captures

the effect of using OSS on quality. In Section 6, I do not find strong statistical evidence

that βS differs from zero, so I do not include other characteristics in XW
fst(Kt). In industries

where OSS has a clearer effect on product quality, a more flexible parameterization would

be appropriate to better capture how OSS affects quality and hence business stealing under

product market competition.

40I include an extensive margin for the firm’s own OSS contributions because these are often zero. For
empirical analysis of investment, I only consider firm-years with employed web developers (Section 3.3),
implying Kft > 0. Since active s ∈ OSt have at least one contribution, Kst > 0 as well.

41For instance, the domestic language share could inform policies that subsidize documentation translation.

23

Lastly, I include market-year fixed effects ωΞ
mt and unobservables ωΞ

jt and εΞjt. These cap-

ture components of website quality not explained by the model. I discuss their distributions

and estimation in Section 5.

4.2. Website Demand

After firms make choices, consumers generate web traffic by making discrete choices.42 I

assign each website j ∈ Jt to a market m(j) ∈ M. In my data, there are |M| = 80 markets.

In each, consumers of types i ∈ It choose to either visit a website j ∈ Jmt ⊂ Jt or the

outside option j = 0 of not visiting a website to maximize their indirect utility:

max
j∈Jmt∪{0}

{
Vijt(ξjt) + εVijt

}
where Vijt(ξjt) =

0 if j = 0,

β′
VX

V
ijt︸ ︷︷ ︸

Horizontal
“home bias”

+ ξjt︸︷︷︸
Vertical
quality

if j ∈ Jmt.
(13)

I normalize the systematic utility of consumers’ outside option j = 0 to zero. Websites

j ∈ Jmt are vertically differentiated by quality ξjt. Beyond market segmentation, websites

are horizontally differentiated according to “home bias” indicators in XV
ijt for whether the

website is operated by a firm in consumer type i’s country and whether its content is in the

consumer’s primary language. Consumer types i ∈ It are country-language pairs.

I parameterize utility with firm country and content language because these variables

are relevant to my focus on industrial policy—strong “home bias” will limit the amount of

international competition in my policy simulations. Since I focus on the US and China, I

include separate indicators in XV
ijt for the US, China, English, and Chinese.

Website Traffic. Consumer choices generate traffic Qjt(ξt). To derive an expression for

traffic Qijt(ξt) from consumers of type i ∈ It, I assume the non-systematic portion of utility,

εVijt, is i.i.d. type I extreme value. Assuming a maximum potential traffic Qimt,

Qjt(ξt) =
∑
i∈It

Qijt(ξt) where Qijt(ξt) =
expVijt(ξjt)∑

k∈Jmt∪{0} expVikt(ξkt)
·Qimt. (14)

After consumers make their choices of which websites to visit, firms then receive profit:

net marginal revenue Rjt from traffic Qjt(ξt) minus labor costs.

42Based on Comscore browsing micro data from the US in 2020, a discrete choice assumption seems
reasonable. Among consumers visiting a top website j ∈ Jmt, 75% visit no other k ∈ Jmt \ {j} on the same
day, and 96% of the time spent on Jmt is on a single website.

24

4.3. Industry Equilibrium

I consider pure strategy Nash equilibria. An equilibrium in each year t is software and labor

choices {sft, ℓft}f∈Ft where firms maximize their profit in (1) and consumers maximize their

utility in (13). Firms are myopic, but their choices affect future payoffs through capital

accumulation and switching costs.

With multi-product firms and flexible preference heterogeneity, it is difficult to establish

the existence and uniqueness of equilibria.43 My model introduces positive externalities, fur-

ther widening the scope for multiple equilibria. I focus on numerically computing equilibria

for my policy simulations and assume an equilibrium exists when estimating the model.

5. Estimation

I estimate the model, report results in Section 6, and provide details in Appendices I to L.

Firms’ choices reveal depreciation rates, developers’ wage function, and net marginal revenue

from web traffic. Consumers’ choices reveal their “home biases” and website quality. I

incorporate statistical structure by making distributional assumptions about the model’s

econometric unobservables.

In Section 5.1, I match moments based on web traffic to estimate consumers’ systematic

utility function Vijt (Berry, Levinsohn, and Pakes, 1995, 2004). Given website quality, in

Section 5.2, I use standard timing assumptions to estimate its production function Ξfjt

(Olley and Pakes, 1996; Levinsohn and Petrin, 2003; Ackerberg, Caves, and Frazer, 2015).

Subject to the production function, in Section 5.3, I simulate firms’ cost minimizing-choices

and match simulated moments to estimate rates of capital depreciation δO and δP and the

majority of developers’ wage function Wfst (McFadden, 1989; Pakes and Pollard, 1989). In

Section 5.4, I introduce stronger assumptions about profit maximization to estimate net

marginal revenue Rjt from quality optimality conditions. In Section 5.5, I estimate the

remainder of Wfst not identified by revealed preferences from cost minimization alone.

I summarize my estimation procedure in Table 2. For each of the five steps, I list the

parameters estimated and, in words, how I identify them.

43Morrow and Skerlos (2010) review assumptions for the existence and uniqueness of Bertrand-Nash pricing
equilibria under mixed logit demand, a case similar to equilibria in qualities here.

25

Table 2: Summary of Parameters and Estimation

Section 5.1: Demand Estimation

ξjt Website quality ⇐= Traffic by website and year
βV Consumer “home biases” ⇐= Traffic by website and country

Section 5.2: Quality Production Function Estimation

βP Effect of private capital on quality ⇐= Traffic & total labor covariation
βS Effect of using OSS on quality ⇐= Traffic & OSS use covariation
ωΞ
mt Market-year quality fixed effect ⇐= Traffic by market and year

Section 5.3: Revealed Preferences from Cost Minimization

δO OSS capital depreciation rate ⇐= Firm choices & current vs. past OSS labor covariation
δP Private capital depreciation rate ⇐= Firm choices & current vs. past total labor covariation
α Website part importance weights ⇐= Software & characteristics covariation by part
γL Dev wage shifters ⇐= Labor & characteristics covariation

γS3:6 Majority of Ops wage shifters ⇐= Software & majority of characteristics covariation
κL Dev switching cost ⇐= Labor autocorrelation
κS Ops switching cost ⇐= Software autocorrelation
ρL Dev unobservable autocorrelation ⇐= Initial labor & characteristics covariation
ρS Ops unobservable autocorrelation ⇐= Initial software & characteristics covariation
σL Dev unobservable heterogeneity ⇐= Labor variation
σS Ops unobservable heterogeneity ⇐= Software variation
ωW
ft Firm-year wage fixed effect ⇐= Median web developer wages by country

Section 5.4: Net Marginal Revenue Estimation

Rjt Marginal revenue net of costs ⇐= Quality optimality conditions
η Residual labor supply elasticity ⇐= From Roussille and Scuderi (2024)

Section 5.5: Revealed Preferences from Profit Maximization

γS1:2 Remaining Ops wage shifters ⇐= Software & remaining characteristics covariation

This table summarizes the five steps of my estimation procedure, detailed in Sections 5.1 to 5.5. For each step,
I list the estimated parameters and describe what identifies them. Since the parameters are estimated jointly
in a parametric model, this table provides only high-level intuition. “Firm choices” are software sft and labor
ℓft. “Characteristics” refer to the software characteristics Xfst(Kt) in (11). “Initial” refers to the years firms
and websites enter the sample, where I assume no initial switching costs to distinguish state dependence from
unobserved preference heterogeneity (Heckman, 1978, 1981).

26

5.1. Demand Estimation

I first estimate consumer “home biases” captured by βV and website quality ξjt in (13)

using PyBLP, my own OSS for demand estimation (Conlon and Gortmaker, 2020, 2024).

I match one observed statistic per indicator in XV
ijt with its simulated counterpart. Using

Similarweb data on traffic shares by country, I match the share of global traffic to domestic

firms (separately for the US and China) and to websites in each country’s primary language

(separately for English and Chinese).44 Details are in Appendix I.

Estimation depends on the potential traffic Qimt in (14) from consumers of type i to

websites in market m. I assume global traffic Qt =
∑

i,m Qimt is the number of internet

users from the International Telecommunication Union, scaled by 20 websites per day.45 To

obtain Qimt, in Appendix I, I scale Qt by (i) a country-specific Similarweb-based adjustment

to the global 20, (ii) each country-year’s share of internet users, (iii) each country-language’s

Ethnologue population share (Lewis et al., 2016), and (iv) each market-year’s within-sample

traffic share.

5.2. Quality Production Function Estimation

Given website quality ξ̂jt from demand estimation, I estimate the parameters βP and βS in

its production function. In (12), market-year fixed effects ωΞ
mt help account for bias from

my imperfect measure of potential traffic (Zhang, 2024), while ωΞ
jt and εΞjt are quality shocks

that firms do and do not condition on, respectively, when making their production decisions.

To account for any simultaneity bias,46 I use a fairly standard proxy variable approach

(Olley and Pakes, 1996; Levinsohn and Petrin, 2003; Ackerberg, Caves, and Frazer, 2015).

After removing fixed effects, I assume ωΞ
jt is a flexible function of private capital, weighted

OSS use, and a proxy: total employees from my LinkedIn data. This is a proxy for ωΞ
jt

in that I assume ωΞ
jt increases with the number of workers employed by the firm. A proxy

helps isolate ωΞ
jt from εΞjt, but it is not strictly necessary. In Appendix J, I compare with

other approaches from the dynamic panel literature (e.g., Blundell and Bond, 1998, 2000),

which relax some assumptions but impose others. Results are similar—I discuss them when

presenting estimates in Section 6.

44I use FastText’s (Joulin et al., 2016) lid.176.bin model to identify the most likely language of each website
homepage’s text content. Details on country, language, and market classification are in Appendix F.

4520 is around the 99th percentile of daily in-sample visits in 2020 Comscore browsing data for the US.
Since such market size assumptions are difficult to justify, I ensure my policy simulations in Section 7 are
not driven by outside substitution, which is sensitive to such assumptions (Zhang, 2024).

46Omitting ωΞ
jt from a regression of quality on observables would likely introduce bias because firms

condition on it when choosing labor and software.

27

More impactful are timing assumptions. I assume ωΞ
jt follows a first-order Markov process.

While the firm can know the distribution of this process, I assume it cannot accurately predict

next year’s innovation in unobserved website quality:

ωΞ
jt = E

[
ωΞ
jt

∣∣ωΞ
jt−1

]
+ νΞ

jt where E
[
νΞ
jt+1

∣∣ZΞ
fjt

]
= 0. (15)

Given my assumptions about ωΞ
jt, I estimate βP and βS using a conventional two-step

procedure described in Appendix J. In the first step, I net out εΞjt by regressing estimated

quality on a flexible function of private capital, weighted OSS use, total employees, and

market-year fixed effects. In the second step, I form efficiently weighted moment conditions

from innovations νΞ
jt, recovered from a flexible regression of ωΞ

jt on ωΞ
jt−1.

To target βP and βS, I instrument with two lags of log total labor and weighted OSS use.47

I do not include instruments in ZΞ
fjt to target depreciation of private capital δP or website

part weights α. These parameters, which enter nonlinearly in (12), could theoretically be

identified from variation in web traffic, as consumers might respond more to recent labor or

changes in specific website parts. However, in practice, I find that firms’ choices are far more

informative about these parameters than consumer demand. As a result, I jointly estimate

the quality production function with other parameters that inform firms’ choices.

5.3. Revealed Preferences from Cost Minimization

Subject to the production function, the firm’s profit maximization problem in (1) becomes

cost minimization. The firm minimizes costs to achieve its quantity Qjt(ξt) of web traffic:

min
sft, ℓft

{ ∑
s∈OSt∪{f}

Wfst(sft, ℓft,Kt)ℓfst

}
s.t. ξ̂jt = Ξfjt(sjt,Kt). (16)

I use firms’ revealed preferences from their cost-minimizing choices to estimate the wage

function and the rates of software capital depreciation. Estimates are informed by firms’

choices about how they allocate their labor and which OSS they use. Recall that quality in

(12) is produced by private capital and OSS use. Since my model lacks a labor market, I

simply fix total labor Lft to its observed value, and consider firms’ labor allocation. This

also fixes private capital Kft, meaning the quality constraint limits whether each part of a

website uses in-house software or OSS.

47I include two lags because, when just-identified, I sometimes find multiple estimates that satisfy the
sample moment conditions, pointing to the under-identification issue documented by Ackerberg, Frazer,
il Kim, Luo, and Su (2023). In my case, over-identification seems to resolve this issue.

28

Cost-minimizing choices are unaffected by positive affine transformations of the cost

function, so revealed preferences from cost minimization do not identify the level or scale of

costs. I assume firms’ software and labor choices do not affect fixed costs (i.e., the level) and

report only cost differences in my policy simulations. In Section 6.2, I scale each firm-year’s

costs by adjusting the firm-year fixed effects ωW
ft in (8) to match country-level wage data.

Since I fix total labor Lft to its observed value, revealed preferences from cost minimiza-

tion also do not identify the firm’s residual labor supply elasticity η in (9).48 I return to η

below when estimating net marginal revenue.

I statistically rationalize firms’ cost minimizing choices of labor and software with the

wage unobservables ωL
fst and ωS

jst in (9) and (10). Similar to the quality unobservable ωΞ
jt, I

assume each follows an AR(1) to capture persistence not explained by the model. However,

unlike for ωΞ
jt, it is difficult to invert costs and form moment conditions from ωL

fst and ωS
jst.

49

Instead, I assume their innovations are Gaussian:

ωL
fst = ρL ω

L
fst−1 + νL

fst, νL
fst ∼ N

(
0, σ2

L

)
, ωL

fs0 ∼ N
(
0, σ2

L/(1− ρ2L)
)
, (17)

ωS
jst = ρS ω

S
jst−1 + νS

jst, νS
jst ∼ N

(
0, σ2

S

)︸ ︷︷ ︸
Gaussian

innovations

, ωS
js0 ∼ N

(
0, σ2

S/(1− ρ2S)
)︸ ︷︷ ︸

Initial conditions from
stationary distributions

. (18)

I use a full solution approach for estimation. For each guess of the free parameters in

θ = [δO, δP ,α
′,γ ′

L,γ
′
S, κL, κS, ρL, ρS, σL, σS]

′,50 I draw 10 histories of wage unobservables.51

For each, I solve the constrained cost minimization problem in (16) for all firm-years, selecting

the observed equilibrium.52 To make this step feasible, I concentrate out software choices,

use Hessians to optimize labor, and smooth discrete jumps. Appendix L provides details. To

48In principle, it is possible to relax this constraint and identify η by matching the average Lft. However,
without a model of the developer labor market or a different approach, I expect correlation between Lft

and wage unobservables ωW
ft to bias any such estimate of how wages respond to increases in total labor. My

approach more credibly addresses how wages respond to changes in the allocation of labor.
49Invertibility of my demand system and production function allows for weak assumptions about unob-

served quality. Labor nonnegativity and software discreteness complicate cost inversion. For example, any
value of ωS

jst within a small range would rationalize the same software choice. Partial identification could
help but would pose computational challenges for policy simulations.

50These are all but a αp, since
∑

p αp = 1, and γS1:2, which are not identified by revealed preferences from
cost minimization alone because fixing ξjt and Lft fixes 1sjpt∈OSt

and Kft. I return to γS1:2 in Section 5.5.
51Only a few draws are needed because simulation error averages out as the number of firm-years increases:

Ackerberg (2009) notes that for the method of simulated moments, using just 10 simulation draws increases
the asymptotic variance by only 10% (McFadden, 1989; Pakes and Pollard, 1989).

52With externalities, multiple equilibria are possible. I select the one observed in the data by fixing the
channels through which these externalities operate—Kst and Kcst in (5) and (6)—to their observed values
after solving for all firms’ choices. I fully solve for equilibria in the policy simulations in Section 7.

29

target each parameter in θ, I simulate statistics, average them over firm-years and simulation

draws, and form a minimum distance objective function based on approximately efficiently-

weighted deviations from observed counterparts.

I list all targeted moments in Appendix Table K1. To target γL, I use log-transformed

labor-weighted averages of the software characteristics in (11), replacing capital with sums

over different horizons to target δO and δP . For γS, I weight by traffic and software use,

separately for each website part to target α. In both weighted averages, I include switching

indicators to target κL and κS. To separate state dependence from persistence of unobserved

preference heterogeneity (Heckman, 1978, 1981), captured by ρL and ρS, I assume no initial

switching costs and interact averages for new firms and websites with initial year indicators.53

Finally, I target the amount of this heterogeneity, captured by σL and σS, with standard

deviations of labor and traffic shares across software.

5.4. Net Marginal Revenue Estimation

Fixing quality allows me to estimate web development costs without assuming that quality

choices are profit-maximizing. This is desirable because much of website quality is deter-

mined by factors outside the scope of my model, such as website content.

However, fixing demand prevents me from conducting policy simulations involving com-

petition for web traffic. For these simulations, I assume firms choose quality optimally to

maximize profit while continuing to hold total labor Lft fixed. Denoting the minimum cost

from (16) as Cft(ξ̂t, Lft), we can rewrite the firm’s profit maximization problem in (1) as a

choice over quality ξft = {ξjt}j∈Jft
:

max
ξft

{ ∑
j∈Jft

RjtQjt(ξt)− Cft(ξt, Lft)

}
. (19)

Each choice of quality implies (i) a utility-maximizing choice of traffic, with parameters

estimated from consumers’ revealed preferences, and (ii) a cost-minimizing choice of software

and labor, with parameters estimated from firms’ revealed preferences from cost minimiza-

tion. Balancing traffic against costs in profit maximization simulations requires estimating

Rjt, marginal revenue net of marginal costs.

Data on website revenue is limited. Instead, I estimate Rjt using revealed preferences

53There is a remaining initial conditions problem (Heckman, 1981) for 44% of firms with an initial year
before 2015. Choices depend on past choices, which are unobserved, as they depend on unobservables. I
approximate 2014 choices by simulating them without switching costs.

30

implied by quality optimality. Consider the quality production function in (12). Using OSS

instead of in-house software causes a discrete change in quality, but on the margin, firms

increase the quality of all their websites by increasing private capital Kft through additional

labor Lft. This implies a single quality optimality condition for each firm-year in my sample,

which I use to estimate a common Rft for its websites. Letting ∂ξft represent a marginal

change in all qualities at once and Lft(ξft) the labor required to achieve them,

Rft =

(
∂Qft(ξt)

∂ξft

)−1(
∂Cft(ξt, Lft)

∂ξft
+

∂Cft(ξt, Lft)

∂Lft

∂Lft(ξft)

∂ξft

)
. (20)

My estimator R̂ft is an average over simulation draws. In Appendix K, I construct nearly

all the above terms from my estimates, except for the derivative of cost with respect to total

labor. This derivative is the average wage scaled by 1 + 1/η, where η is the firm’s residual

labor supply elasticity in (8). Recall that because I fix total labor, revealed preferences from

cost minimization do not identify η. Instead, I take η from Roussille and Scuderi (2024),

who estimate a range of firm-level elasticities for US software developers using detailed data

from Hired.com. I use their average, η = 4.7.54

5.5. Revealed Preferences from Profit Maximization

Lastly, I address the first two coefficients in γS on OSS use, 1s∈OSt , and its interaction with

the log of private capital, Kft. Revealed preferences from cost minimization identify neither

of these coefficients because fixing quality determines the choice between in-house software

and OSS, and fixing total labor determines private capital. As a result, moments based on

use-weighted averages of 1s∈OSt and logKft are perfectly matched during cost minimization.

Given net marginal revenue R̂ft, I estimate both coefficients by slightly modifying my

estimation procedure in Section 5.3. I (i) allow firms to optimize profit and (ii) use only

the previously perfectly-matched moments to form the minimum distance objective function.

Computationally, profit maximization requires minimizing costs for each choice between in-

house and OSS for all website parts. To make this feasible, I restrict firm-years with multiple

websites to make this choice once per part and use only one set of wage unobservables.55

Appendices K and L provide technical details.

54An η = 4.7 is not unusual among firm-level elasticities found in the literature across occupations (e.g.,
Naidu et al., 2018; Sokolova and Sorensen, 2021). It is close to the median of 4.8 estimated by Azar et al.
(2022) using a similar approach with CareerBuilder.com but for more occupations.

55Using only one set increases the variance of my estimator, which I account for by re-drawing wage
unobservables in my bootstrap procedure. I expect the restriction on multi-website firms to have minimal
impact: across firm-year-parts with multiple websites, 87% either only use in-house software or only OSS.

31

6. Estimates

After presenting estimates, I incorporate additional data and assumptions to express them

in dollars, allowing me to quantify the dollar effects of the next section’s policy simulations.

When possible, I use what limited data are available on web developer wages and website

revenue to provide reassurance about my estimates.

To quantify uncertainty, I form bootstrapped confidence intervals by estimating the model

80 times, once for each set of bootstrapped traffic and OSS investment from Appendices C

and G. I do not attempt to account for uncertainty from predictive matching and classifica-

tion in Section 3.1.56 When bootstrapping my estimation procedure, I re-sample firms and

re-draw cost unobservables to account for both sampling and simulation error.

6.1. Demand Estimates

Demand estimation relies on two inputs: global traffic data from 2014 to 2022 and country-

specific traffic shares for 2021 from Similarweb. Since my “home bias” estimates in β̂V

match country-specific shares, they are based solely on 2021 data. However, I derive website

quality ξ̂jt from global traffic data spanning 2014 to 2022. Raw demand estimates β̂V can

be difficult to interpret, so I relegate them to Appendix Table I1.

In Table 3, I report traffic-weighted likelihoods of consumers visiting a domestic or same-

language website, compared to if it were foreign or in another language. From left to right,

I consider preferences for firm country, content language, and both. Country and language

explain similar variation, so their individual effects are comparable. Combined, their effects

are dampened but still show strong “home bias.” Consumers are 21 times more likely to

visit a domestic website and 10 times more likely to visit one in their primary language.

The country effect is largely driven by Chinese consumers—a large portion of global internet

users—while the language effect is driven by non-English and non-Chinese speakers.

I use the rightmost specification. A key result is that consumers show a strong home bias

for websites operated by domestic firms, especially in China. This is unsurprising—China’s

internet restrictions have decoupled the Chinese internet. My revealed preference approach

translates decoupling into a strong home “preference” for Chinese consumers.57 In the policy

simulations, home bias will limit cross-border concerns about business stealing.

56Recent work on inference with flexibly-predicted data has focused on simpler models with clearer divides
between observed and predicted observations (e.g., Angelopoulos et al., 2023; Zrnic and Candès, 2024).
Explicitly modeling matching and classification errors could help but would pose computational challenges.

57Unlike other countries, where home bias likely reflects genuine consumer preferences, China’s home bias
reflects the joint preferences of its consumers and government. The latter prefers to restrict the former.

32

Table 3: Website Demand Estimates

Preference Heterogeneity

Country Language Both

P̂(Visit | Same country)÷ All consumers 40.3 21.3

P̂(Visit | Different country) [32.0, 58.3] [16.6, 33.1]

↪→ US-based 1.8 1.3
[1.7, 1.8] [1.3, 1.4]

↪→ China-based 141.6 75.7
[106.9, 213.6] [55.8, 123.8]

↪→ Other countries 4.2 3.0
[3.7, 5.0] [2.7, 3.4]

P̂(Visit | Same language)÷ All consumers 39.7 9.5

P̂(Visit | Different language) [37.4, 43.9] [9.5, 9.8]

↪→ English-speaking 1.5 1.5
[1.5, 1.5] [1.5, 1.5]

↪→ Chinese-speaking 112.7 5.1
[97.3, 135.2] [4.7, 5.7]

↪→ Other languages 19.1 16.8
[16.4, 22.4] [16.3, 17.7]

Same country traffic share All websites 31.6% 31.6%
↪→ US-based owner 28.6% 28.6%
↪→ China-based owner 91.2% 91.2%

Same main language traffic share All websites 43.4% 43.4%
↪→ English content 32.7% 32.7%
↪→ Chinese content 94.7% 94.7%

Observation counts Countries 138 138
Languages 97 97
Markets 80 80 80
Website-years 152,622 152,622 152,622
↪→ Websites 58,106 58,106 58,106
↪→ Total years 9 9 9
↪→ Micro years 1 1 1

This table reports demand estimates for three specifications: country indicators in XV
ijt on the left, lan-

guage indicators in the middle, and both on the right. Appendix Table I1 provides the underlying param-
eter estimates. The top panel of this table reports more interpretable relative likelihoods of a consumer
visiting a website if it is owned by a firm in the same country or has content in the consumer’s primary
language. These ratios are computed for each website-consumer type pair, with traffic-weighted averages
reported separately by country and language. The middle panel reports the matched Similarweb statistics
from 2021. In brackets, 95% confidence intervals are from 80 bootstrap samples that account for sampling
error from traffic estimation in Appendix Table C1.

33

Dollar-Denominated Demand. In policy simulations where I allow firms to choose qual-

ity, I express changes in consumer welfare in dollars. I base this on a back-of-the-envelope

calculation using results from a large-scale incentivized choice experiment conducted by

Brynjolfsson et al. (2023) in 2022. The experiment measured Facebook users’ willingness to

accept (WTA) compensation for losing access to Facebook for a month.58 It included nearly

40,000 participants from 13 countries, but for simplicity, I use the pooled WTA of $31.
In Appendix I, I simulate losing Facebook access for users in the same year and countries.

I divide $31 by their average monthly welfare change and use the resulting conversion factor

to scale β̂V in Appendix Table I1. I estimate that consumers are willing to pay between $2
in the US and $33 in China to spend their daily time on a domestic website rather than a

similar foreign one. I trust this conversion more for US consumers than for those in China,

who were not surveyed and whose traffic also reflects government preferences.

Sample Restrictions. The sample sizes at the bottom of Table 3 are larger than those

of the restricted sample discussed in Section 3.3. Since consumer choices depend on the full

set of alternatives in each market, I do not exclude any websites when estimating demand. I

use quality estimates from this unrestricted sample when estimating the supply side, where

it is important to discard low-quality and less-relevant investment data. For supply-side

estimation and the policy simulations, I focus on endogenizing the restricted sample and

treat everything else it depends on as exogenous.

6.2. Supply Estimates

I report supply estimates in Table 4. At the top, the estimated depreciation rate for OSS cap-

ital, δ̂O, is much lower than for private capital, δ̂P . Both are identified by how strongly firm

choices correlate with lagged investment. My estimates suggest that web OSS investment

retains value for years, but given my coarse measure of in-house investment, it is unsurpris-

ing that generic developer hours rapidly lose value. Below the depreciation estimates, I find

sizable importance weights α̂ for all three website parts.

In the quality column, I divide β̂P and β̂S by β̂V 1, the domestic preference for consumers

outside the US and China. I estimate that a 1% increase in a firm’s private capital is

comparable to its website being 0.2% closer to domestic for these consumers. This estimate

is driven by the strong link between in-house investment and traffic, as shown in Figure 5

from Section 3.4. Consistent with the weaker link between OSS use and traffic in the same

58Researchers worked with Facebook to ensure compliance for a random sample of participants selected
for payment. A similar estimate was obtained in an earlier US-only experiment (Brynjolfsson et al., 2019).

34

Table 4: Website Supply Estimates

OSS Capital Private Capital

δ̂O, δ̂P Yearly rate of capital depreciation 0.09 0.72
[0.06, 0.12] [0.70, 0.74]

Backend JavaScript User Interface

α̂ Website part importance weights 0.27 0.38 0.35
[0.24, 0.32] [0.32, 0.40] [0.32, 0.39]

Quality Development Operations

β̂P /β̂V 1 Log of private capital +0.17
[+0.14, +0.20]

β̂S/β̂V 1, γ̂L, γ̂S OSS indicator -0.13 +2.97 +11.67†

[-0.33, +0.07] [+2.87, +3.00] [+1.44, +15.06]

× Log of private capital +0.50 -0.34†

[+0.50, +0.62] [-0.45, +0.67]

× Log of OSS capital -0.48 -0.87
[-0.50, -0.40] [-0.94, -0.83]

× Domestic share of OSS capital -0.55 -0.44
[-0.57, -0.50] [-0.52, -0.34]

× Any firm-specific OSS capital -0.64
[-0.84, -0.61]

↪→ × Log of firm-specific OSS capital -2.05 -0.21
[-2.10, -1.87] [-0.35, -0.14]

κ̂L, κ̂S Switching costs 3.96 4.12
[3.75, 3.96] [3.88, 4.17]

ρ̂L, ρ̂S Unobservable autocorrelation 0.59 0.44
[0.51, 0.59] [0.26, 0.51]

σ̂L, σ̂S Unobservable heterogeneity 0.48 0.18
[0.46, 0.55] [0.13, 0.32]

Firm-years 10,555 17,059
↪→ Firms 2,481 3,980
↪→ Years 7 8

This table reports supply estimates. Those in γ̂S with † superscripts come from profit maximization. I di-
vide β̂P and β̂S by β̂V 1 from Appendix Table I1 to express their units as preferences for domestic websites
for consumers outside the US and China; Appendix Table J1 provides unscaled estimates and those in dollars
per daily visit. In brackets, 95% confidence intervals are from 80 bootstrap samples that account for sam-
pling error from traffic estimation in Appendix Table C1, OSS investment estimation in Appendix Table G1,
and demand estimation in Table 3. For each bootstrap sample, I re-sample firms and re-draw unobservables.
Targeted moments are listed in Appendix Table K1, with details in Appendices J to L.

35

figure, my estimate of β̂S is small, with a wide confidence interval that includes zero. Overall,

I fail to find strong evidence that OSS use significantly impacts website quality. This could

be due to weak internet user responses to OSS use, noise in my web traffic data, or both.

In Appendix J, I compare my proxy variable approach to others from the dynamic panel

literature (e.g., Blundell and Bond, 1998, 2000), which rely on different assumptions. After

accounting for simultaneity bias, my estimate β̂P remains fairly stable, though noisier when

differencing out website fixed effects. The story for β̂S is similar as well—I find no strong

evidence that using OSS improves or harms website quality. I expect OSS to have a greater

impact on product quality in other industries, but for web development, my results suggest

OSS plays a clearer role in firm costs.

For development, the first coefficient in γ̂L on the OSS indicator scales the amount of

OSS investment to match its observed level. The coefficient on the log of private capital is

more interpretable: it indicates that a 1% increase in a firm’s private capital makes OSS work

0.5% more expensive, compared to in-house work. Negative coefficients on the remaining

characteristics reflect value developers derive from contributing to OSS. The model translates

higher likelihoods in Figure 6 from Section 3.4 of investing in highly developed, domestically

developed, and self-made OSS into wage reductions from higher OSS capitalKst, its domestic

share Kc(f)st/Kst, and the intensive margin of its firm-specific component Kfst.
59

For operations, the first coefficient in γ̂S on the OSS indicator is large and noisy because

it offsets the other coefficients in γ̂S and the noisily-estimated β̂S to match the observed level

of OSS use. The zero-including confidence interval on the log of private capital indicates that

the operational cost of using web OSS does not clearly vary with the firm’s private capital.

Similar to the development column, the negative coefficients on the remaining characteristics

reflect the higher likelihoods in Figure 6 of using highly developed, domestically developed,

and self-made OSS. If a firm were to use OSS for all of its websites’ parts, my estimates

indicate that a 1% increase in their overall OSS capital, domestic shares, or firm-specific

components would reduce required wages by 0.9%, 0.4%, and 0.2%, respectively.

My estimates indicate a wide gap between the private cost reductions from investing in

OSS and the resulting public cost reductions enjoyed across firms, which could be addressed

with subsidies. For a given amount of OSS investment, private and public benefits are of a

similar order of magnitude for a single firm. However, public benefits are multiplied by the

widespread use of that OSS across many firms. I estimate that these large public benefits are

moderately, but not overpoweringly localized, which influences how much domestic subsidies

59There is no coefficient in γ̂L on its extensive margin because Kfst > 0 whenever Lfst > 0.

36

or restrictions on foreign collaboration can address coordination issues.

Finally, sizable switching costs κ̂L and κ̂S, along with high unobservable autocorrela-

tions ρ̂L and ρ̂S, help explain the persistence of labor and software choices documented

in Section 3.4. Unobservable scales σ̂L and σ̂S capture the variation in firms’ choices left

unexplained by the rest of the model.

Dollar-Denominated Supply. The scale of costs, determined by firm-year fixed effects

ωW
ft in (8), does not affect cost minimization estimates but impacts policy simulations. Ide-

ally, I would scale costs to match firm-level wage data, but such data are scarce. Instead, I

match each firm-year’s average hourly cost to the median wage of full-time web developers

in the firm’s country using large-scale developer surveys (Stack Overflow, 2019–2023). The

matched wages for the US and China are $57 and $17, respectively, in 2017 dollars.60

These surveys also allow respondents to indicate if they have done extensive work with

a subset of the OSS frameworks in my sample—8 to 10, depending on the year. For 225,339

response-OSS pairs, a regression of log wages on the large and domestic variables from

Section 3.4 shows that working with web OSS that has above-median investment is associated

with a 1% lower wage, and domestic web OSS with a 3% lower wage, after adjusting for

cross-country differences with country-year fixed effects.61 Although I do not expect these

magnitudes to be comparable with my estimates, and the anonymous surveys do not report

employer identities,62 it is reassuring that both the survey data and my model indicate that

it is cheaper to work on both larger and domestic OSS.

Scaling costs also scales net marginal revenue R̂ft, estimated from the quality optimality

conditions in (20). I estimate a median of $0.10 per daily visitor, with an interquartile range

of $0.02 to $0.57. While website revenue data are limited, public firm data provide some

reassurance about this order of magnitude. For 1,184 firm-years matched to Compustat

segment data, I estimate $0.06 from a regression of annual web-related revenue on traffic,

adjusting for firm and year fixed effects.63 Case studies offer further reassurance: Lambrecht

60I deflate using the PCE. $57, which includes bonuses and perks, is slightly higher than $45 from the BLS
(2022). Across surveys, there are 43,729 responses about compensation from employed developers working
on PHP, CSS/HTML, or “web frameworks” in the US, 784 in China, and 139,292 in other countries.

61Clustering by 116,575 responses, standard errors are 0.4% and 2.3%, respectively.
62An alternative would be to compare OSS mentioned in job postings to wages. I do not pursue this, as

it would require adjusting for firms’ choice to post based on their willingness to pay, likely needing a model
of this choice. More generally, posted wages are known to provide little information (Batra et al., 2023).

63I use my matching results from Appendix E to obtain annual sales data for public firms in North America.
I restrict to NAICS 4541, 5112, 5182, 5191, 5192, and 5415—business segments potentially linked to web
traffic. After winsorizing at 5 and 95% levels, I regress annual segment revenue on web traffic and adjust for
firm and year fixed effects. Clustering by firm, the standard error is $0.03.

37

and Misra (2017) estimate $0.05 for ESPN from advertising alone, and Ortiz-Cordova and

Jansen (2012) report about $0.002 for the smaller music website BuenaMusica.

7. Simulations

Using my estimates, I simulate counterfactuals to assess the global impact of China con-

tinuing to extend its OSS policies discussed in Section 2.2, along with the possibility of a

US response. After discussing rationales for restrictions and subsidies, I report two sets of

simulations. First, I hold web traffic fixed, and conservatively report how restrictions and

subsidies affect OSS investment and firm costs through cost minimization alone. Second, I

allow quality and demand to adjust, and report how competitive profit maximization im-

pacts firm profit and consumer surplus. Allowing quality and demand to adjust requires

stronger assumptions, but enables me to address product market competition and allows

firms to more fully respond to OSS policies.

As in estimation, I conservatively continue holding each firm’s total labor fixed, and focus

on how firms allocate this labor.64 I compare each counterfactual simulation to a baseline

without new policies. For each simulation, I fully solve for an equilibrium by iterating on

best responses until the industry converges. By starting from the observed data, this selects

the equilibrium that is, loosely speaking, closest to the status quo. Computational details

are in Appendix L. I quantify uncertainty by extending my bootstrap procedure. For each

bootstrap sample, I re-draw demand, supply, traffic, and OSS investment estimates from

Tables 3 and 4 and Appendices C and G.

7.1. Rationales for Government Intervention

In Appendix M, I illustrate the impact of government involvement in the private provision of

OSS using simple model parameterizations and a series of payoff matrices; here, I focus on the

underlying intuition. I do not take a firm stance on the objective function of policymakers,

who may value outcomes beyond domestic firm profits and consumer surplus, such as national

security. Instead, I emphasize economic inefficiencies that motivate familiar interventions.

First, positive externalities can lead to free-riding and underprovision of OSS. If the

private benefits of investing in OSS are much weaker than its public benefits, OSS will be

64I see this restriction on firms’ optimal production decisions as providing conservative estimates of OSS
policy outcomes. In principle, one could unfix Lft by finding a credible estimate for η in (8). In practice,
however, given the small scale of OSS investment in my simulations, it is challenging to separate meaningful
changes in total employment from numerical noise when solving the firm’s problem. If total employment
changes were larger, accounting for aggregate labor supply elasticities would also be necessary.

38

severely underprovided by the private sector. To increase the private provision of this public

good, governments could use subsidies (Pigou, 1920). Subsidies naturally enter the model

through cost reductions in proportion to labor ℓfst invested in s ∈ OSt.

Second, localized benefits may lead to domestic coordination problems. Consider Chinese

firms that typically use s ∈ OSt with capital stocks Kst primarily created by US firms (i.e.,

Kcst is high for c = the US). From China’s perspective, the private sector wants more

investment in domestic OSS (i.e., with high Kcst for c = China), but private incentives to

improve it are weak because it is rarely used. A “big push” (Rosenstein-Rodan, 1943) could

coordinate domestic investment by subsidizing investment in OSS with high domestic capital

shares Kc(f)st/Kst, or by penalizing investment in OSS with more foreign capital.

7.2. Heightened Restrictions in China

I consider penalties first by designing a counterfactual scenario where we imagine that China’s

13th Five-Year Plan from 2016 instructed agencies to restrict investment in foreign OSS,

instead of merely promoting OSS. China’s restrictions on VPN use and OSS collaboration

documented in Section 2.2 indicate that China has the technical and legal infrastructure

to continue extending its restrictions on foreign OSS collaboration. Tightened restrictions

could be economically justified if, for example, they coordinated China’s private sector to use

and invest in domestic OSS, resulting in domestic cost savings. They could also be justified

on other grounds, such as domestic control over information or software security.

To begin, I hold web traffic fixed and conservatively focus on equilibrium changes from

cost minimization alone. Among the 27 web OSS in my sample, I identify the five with lead

maintainers from China.65 Starting in t = 2016, I assume that for every hour Chinese firms

invest in s ∈ OSt outside of these five, they incur an additional cost of $100 multiplied by

1 −Kc(f)st/Kst, the foreign share of OSS capital. A $100 disincentive for investing in fully

foreign OSS is around six times the median hourly wage of web developers in China.

In Figure 7, I plot the percent change in Chinese OSS investment relative to a baseline

without tightened restrictions, reporting medians across wage unobservables. The counter-

factual and baseline are identical before 2016, then diverge as restrictions are introduced.

Chinese investment in web OSS declines by 30% before somewhat recovering. I also plot the

percent change in Chinese investment to web OSS scaled by their Chinese capital shares.

65I manually identify lead maintainers based on project descriptions. Those OSS with lead maintainers
from China also have unusually high Chinese capital shares. They are two backend frameworks (OpenResty
and ThinkPHP), one JavaScript framework (Vue), and two CSS frameworks (Ant Design and Element UI).
A full list of the web OSS in my sample is in Appendix Table D1.

39

Figure 7: Dynamics of Counterfactual Restrictions in China

2015 2016 2017 2018 2019 2020 2021 2022

40%

20%

0%

20%
Ch

an
ge

 in
 C

hi
ne

se
 O

SS
 In

ve
stm

en
t

du
e t

o
Co

un
ter

fa
ctu

al
Re

str
ict

io
ns Investment in web OSS Domestic web OSS investment

This figure reports the percent change in OSS investment for the cost minimization counterfactual with
restrictions in China, relative to a baseline simulation without restrictions. Percentages are medians across 10
simulated histories of wage unobservables. The dashed line scales investment ℓfst in s ∈ OSt by Kc(f)st/Kst,
the domestic share of OSS capital. For the counterfactual, in t ≥ 2016 I add $100× ℓfst × (1−Kc(f)st/Kst)
to the costs of Chinese firms for investing in each s ∈ OSt, except for the five OSS listed in Footnote 65
with lead maintainers from China. Shaded areas are 95% confidence intervals based on 80 bootstrap samples
that account for sampling error from traffic estimation in Appendix Table C1, OSS investment estimation
in Appendix Table G1, demand estimation in Table 3, and supply estimation in Table 4.

Domestic OSS investment declines less but does not significantly increase by 2022. Overall,

these short-run effects appear at odds with China’s goal quoted in Section 1 to “accelerate

the construction of domestic open source communities.”

Long-Term Effects. With switching costs, the effects of policies may take many years to

fully develop. I approximate a long-term horizon by fixing the sample as of 2022 and solving

for an equilibrium without switching costs.66 I compare long-term equilibrium outcomes with

those from a long-term baseline without any new policies, continuing to hold web traffic fixed.

I winsorize costs to mitigate the effects of a few spurious outliers from optimization issues.67

In column (i) of Table 5, I report effects of the tightened restrictions on the world, the

US, and China. In the long run, Chinese investment into web OSS does not fully recover,

declining 3% overall. Domestic OSS investment increases in some bootstrapped simulations,

but the tightened restrictions do not significantly increase domestic investment by more than

66I set κL = κS = 0, allowing me to remain neutral on whether κL and κS reflect actual operational costs,
are conflated with hurdle rates (e.g., Wollmann, 2018), or capture behavioral or agency frictions.

67Numerical error from rare optimization issues in (16)—amplified by my log wage parameterization in
(8)—can create spurious cost outliers. I winsorize the ratio of each firm’s average cost to its country’s
matched wage at the 5 and 95% levels for the US, China, and elsewhere combined. This is the same as
winsorizing average costs for the US and China. Pooling other countries handles countries with few firms.

40

Table 5: Long Term Annual Effects of Counterfactual OSS Policies

Restrict investment in foreign web OSS (i) China
Subsidize domestic web OSS investment (ii) China (iii) China & US
Subsidize investment in all web OSS (iv) Global

Investment in web OSS -0.2% +1.6% +9.1% +57.9%
[-0.5, -0.0] [+1.3, +1.9] [+8.0, +10.0] [+49.9, +63.9]

↪→ US +0.0% -0.0% +16.2% +39.8%
[-0.1, +0.1] [-0.1, +0.0] [+13.9, +17.1] [+35.7, +41.8]

↪→ China -3.1% +21.8% +21.4% +57.4%
[-5.1, -1.4] [+17.8, +25.0] [+19.2, +25.3] [+42.6, +63.6]

Domestic web OSS investment -0.0% +5.0% +21.2% +44.8%
[-0.1, +0.1] [+4.5, +5.4] [+18.6, +22.5] [+40.1, +46.6]

↪→ US +0.0% +0.0% +19.6% +38.6%
[-0.0, +0.1] [-0.1, +0.1] [+17.0, +20.9] [+34.4, +40.2]

↪→ China -0.4% +47.2% +46.7% +65.2%
[-1.0, +0.5] [+41.8, +49.9] [+41.9, +50.1] [+60.1, +72.9]

Investment incentives, millions +$6.2
[+5.1, +7.1]

↪→ US +$0.8 +$2.6
[+0.6, +0.9] [+2.1, +2.8]

↪→ China -$0.1 +$0.1 +$0.1 +$0.5
[-0.1, -0.1] [+0.1, +0.1] [+0.1, +0.1] [+0.4, +0.6]

Firm costs, per dollar of incentive +$7.2 -$11.2 -$30.4 -$26.1
[+1.6, +16.4] [-16.4, -7.8] [-36.6, -26.9] [-28.3, -25.1]

↪→ US +$4.2 -$4.5 -$25.5 -$20.9
[+0.3, +11.5] [-8.3, -0.6] [-30.4, -22.7] [-22.4, -19.8]

↪→ China +$1.8 -$5.1 -$1.7 -$1.4
[+1.3, +2.5] [-6.0, -4.4] [-1.8, -1.5] [-1.5, -1.3]

This table reports the equilibrium effects of cost minimization counterfactuals relative to a baseline with no
new government policies. To approximate a long-term horizon, I fix the sample as of 2022 and solve for an
equilibrium with no switching costs: κL = κS = 0. Estimates are medians over 10 sets of wage unobserv-
ables drawn from their stationary distributions. Costs are winsorized as described in Footnote 67. In column
(i), I add $100 × ℓfst × (1 −Kc(f)st/Kst) to the costs of Chinese firms for investing in each s ∈ OSt, except
for the five OSS projects listed in Footnote 65 with lead maintainers from China; in (ii), I instead subtract
$100 × ℓfst × Kc(f)st/Kst for each s ∈ OSt; in (iii), I additionally subtract the same for US firms; and in
(iv), I instead subtract $100× ℓfst from the costs of all firms for investing in any s ∈ OSt. Reported costs do
not include these investment incentives. In brackets, 95% confidence intervals are from 80 bootstrap samples
that account for sampling error from traffic estimation in Appendix Table C1, OSS investment estimation in
Appendix Table G1, demand estimation in Table 3, and supply estimation in Table 4.

41

1% in the long run. Investment from other countries does not significantly change.

To benchmark dollar magnitudes, I estimate that if the tightened restrictions were im-

plemented as a tax, they would generate about $100,000 per year in tax revenue from the

firms in my sample.68 For each dollar of disincentive, the tightened restrictions do $2 of

damage to the Chinese web development firms in my sample. Since foreign firms would have

benefited from lost Chinese investment into foreign OSS, global damages are $7 per dollar

of disincentive.

Firm costs in Table 5 do not account for any government transfers. If accounted for, the

effective costs incurred by Chinese firms would be slightly higher. If the tightened restric-

tions were instead implemented using non-tax mechanisms—such as the VPN restrictions

or GitHub traffic throttling discussed in Section 2.2—these “transfers” would generate no

revenue and instead contribute to deadweight loss. I do not attempt to combine costs and

transfers into an overall welfare effect.69

The model in Section 4 does not guarantee that restrictions will be ineffective. Their

impact depends on the relative sizes of the forces in the model, and particularly on the scale

and localization of public benefits from OSS investment, which result in the coordination

problem. For example, if the estimated operations coefficients in γ̂S on OSS capital and its

domestic share were five times larger, I find in Appendix Table N1 that restrictions are more

likely to increase investment into Chinese OSS and even slightly reduce domestic costs.

Ultimately, restrictions on foreign collaboration can only do so much. Without stronger

measures, like requiring firms to invest a set amount in OSS—far more extreme than China’s

current policies discussed in Section 2.2—firms may simply choose not to invest in OSS.

7.3. Heightened Subsidies

The support for domestic OSS in China’s last two Five-Year Plans aligns more closely with

subsidies. By providing state support to Gitee, policymakers in China have already shown

they are willing to financially support domestic OSS investment. Funneling subsidies through

an OSS platform is just one possible mechanism. Others include tax credits (e.g., New York

State Assembly, 2022) or changes to accounting standards (e.g., Financial Accounting Stan-

dards Board, 2024). A detailed evaluation of the incidental costs associated with different

mechanisms is beyond the scope of this paper. Instead, I simulate incentives and ignore

68If my results generalize beyond this sample of a single industry that covers only a fraction of OSS,
absolute magnitudes such as the amount of tax revenue would be much larger.

69This would require making strong assumptions about the form of restrictions, the operational efficiency
of OSS policy, constraints on fiscal capacity, and the opportunity cost of foregone policies in other industries.

42

implementation costs.

In column (ii) of Table 5, I assume that for every hour Chinese firms invest in s ∈ OSt,

they receive $100 multiplied by Kc(f)st/Kst, the domestic share of OSS capital. I find that

the heightened subsidies are fairly cheap and successfully promote Chinese OSS investment,

especially in domestic OSS, which increases by nearly 50% compared to the baseline. Per

dollar of subsidy, costs fall by $5 in China and by $11 globally. Beyond cost reductions,

if China derives national security benefits from more OSS built in China, the domestic

advantage of heightened subsidies would be even greater.

What if there were a US response? Recent US policies including the CHIPS Act (2022)

have been direct responses to Chinese industrial policy. As tensions rise, for instance, over

OSS large language models,70 the US government may prefer to maintain its OSS dominance

for economic or geopolitical reasons. In column (iii), I retain China’s subsidies and match

them in the US. US subsidies are eight times larger because the firms in my sample are

disproportionately based in the US. Global cost reductions amount to $30 per dollar of

subsidy. US firms benefit the most, and investment into US-built OSS increases.

Large innovation spillovers could justify even broader subsidies. While difficulties with

international coordination make a global subsidy unlikely, simulating one helps benchmark

potential gains from more realistic, unilateral subsidies in columns (ii) and (iii). In the final

column (iv), I replace unilateral policies with a $100 subsidy per hour invested by all firms

in any web OSS. Though cost reductions per dollar of subsidy are slightly lower than under

unilateral policies, global subsidies are seven times larger, leading to about six times the

global cost reductions. Overall, I find that unilateral and US-focused policies can capture a

substantial, though incomplete, share of the global benefits from subsidizing OSS.71

Again, the model does not guarantee that subsidies will be this effective. If the estimated

private benefits of OSS investment were much stronger relative to its public benefits, the

private sector would better-provide OSS, making subsidies less effective. For example, if the

estimated development coefficient in γ̂L on a firm’s own OSS contributions were five times

larger, I find in Appendix Table N1 that with stronger private benefits, global subsidies

would reduce costs by four times less per dollar of subsidy.

The effectiveness of subsidies also depends on which OSS are targeted. Domestic-focused

70Alan Estevez, who leads the US Bureau of Industry and Security (BIS), stated in December 2023 (Center
for Security and Emerging Technology, 2023) that the BIS was considering options for regulating exports
of OSS large language models (LLMs). The US and China produce many of the world’s leading LLMs,
including Meta’s Llama (github.com/meta-llama) and Alibaba’s Qwen (github.com/QwenLM).

71I do not attempt to solve for “optimal” policies. This would require taking a strong stance on the full
objective function of policymakers. Much larger OSS subsidies would also require less-credible extrapolation.

43

https://github.com/meta-llama
https://github.com/QwenLM

US subsidies are especially cost effective because firms primarily use and benefit from US-

built OSS. If domestic and global subsidies were instead weighted by the share of websites

using each OSS, I find in Appendix Table N2 that cost reductions per dollar of subsidy are

30% to 80% higher. By focusing on web development, I can identify the most-used web

OSS, but effectively targeting subsidies in other industries will require more data collection,

such as the OSS Census project of Nagle et al. (2022) with the Linux Foundation, or the

US Census’s recent inclusion of questions about use of automation technology in its Annual

Business Survey (McElheran et al., 2024; Acemoglu et al., 2024).

7.4. Product Market Competition

So far, I have held web traffic fixed and conservatively focused on changes from cost min-

imization alone. Allowing quality and demand to adjust in equilibrium requires stronger

assumptions, but enables me to address product market competition, and allows firms in my

model to more fully respond to OSS policies.

In theory, business stealing can either strengthen or weaken OSS policies. For example,

suppose OSS subsidies increase investment, lowering firms’ costs and leading to greater OSS

use. If this also improves website quality, and competition over quality is intense, firms

may internalize that their OSS investment causes business stealing, dampening the policy’s

impact. Conversely, if OSS use harms website quality but firms still prefer it to cut costs,

business stealing could amplify the effects of OSS policies. I provide more examples in

Appendix M, along with simple model parameterizations and a series of payoff matrices.

In Table 6, I re-simulate the policies from Table 5, but allow firms to choose quality. As

with my other simulations, I keep each firm’s total labor fixed and winsorize costs. Since spu-

rious outliers from optimization issues can also affect revenue, I winsorize marginal revenue

as well.72 To prevent results from being driven by different baseline use of in-house software,

which was previously fixed during cost minimization, I draw in-house operations unobserv-

ables from truncated distributions consistent with observed usage.73 To prevent demand-side

results from being driven by market size assumptions (Zhang, 2024), I fix the total in-sample

traffic by adjusting the utility each consumer receives from the outside option.74

72As in Footnote 67, I winsorize R̂ft at the 5 and 95% levels for the US, China, and elsewhere combined.
73This ensures that OSS use in both profit maximization and cost minimization simulations are similar.

For each part p with sjpt = f , ωS
jft does not affect cost minimization because the choice of in-house versus

OSS is fixed. For profit maximization, I truncate the distribution of ωS
jft in (18) so the firm makes the same

choice of in-house versus OSS for p, given the other software characteristics in the cost minimization baseline
and the net marginal revenue estimated from quality optimality conditions.

74This ensures that in each market, firms in my simulations compete for a fixed amount of web traffic.

44

Table 6: Long Term Annual Effects with Product Market Competition

Restrict investment in foreign web OSS (i) China
Subsidize domestic web OSS investment (ii) China (iii) China & US
Subsidize investment in all web OSS (iv) Global

Investment in web OSS -1.7% +0.8% +6.0% +85.7%
[-2.0, -1.3] [+0.6, +1.6] [+5.0, +7.3] [+68.5, +107.2]

↪→ US -0.0% -0.0% +15.1% +43.0%
[-0.2, +0.1] [-0.2, +0.0] [+11.5, +17.8] [+35.5, +51.5]

↪→ China -13.7% +9.3% +13.3% +69.7%
[-15.1, -11.4] [+6.7, +16.3] [+9.1, +17.7] [+51.7, +85.5]

Domestic web OSS investment -0.4% +3.3% +18.3% +44.0%
[-0.7, -0.2] [+2.0, +5.0] [+14.1, +22.0] [+33.1, +53.2]

↪→ US +0.4% -0.1% +19.0% +24.5%
[+0.3, +0.8] [-0.4, +0.0] [+13.9, +22.3] [+18.7, +28.4]

↪→ China -7.4% +36.3% +32.3% +48.4%
[-8.9, -5.6] [+19.0, +41.5] [+23.6, +39.4] [+39.5, +60.6]

Investment incentives, millions +$47.0
[+34.1, +56.3]

↪→ US +$3.0 +$10.8
[+2.5, +3.2] [+8.8, +12.3]

↪→ China -$1.7 +$0.5 +$0.6 +$5.0
[-1.8, -1.5] [+0.4, +0.6] [+0.5, +0.7] [+3.6, +6.0]

Firm costs, per dollar of incentive +$12.4 -$14.3 -$6.5 -$9.7
[+7.1, +18.1] [-17.1, -11.9] [-10.7, -4.1] [-11.0, -7.9]

↪→ US +$10.2 -$5.6 -$5.2 -$6.5
[+5.7, +14.0] [-8.3, -1.0] [-9.1, -1.6] [-7.4, -5.0]

↪→ China +$2.4 -$6.3 -$0.6 -$1.2
[+1.3, +4.7] [-7.8, -2.9] [-1.5, -0.1] [-1.5, -1.0]

Firm profit, per dollar of incentive -$14.7 +$17.7 +$13.2 +$13.8
[-29.4, -0.8] [+1.3, +56.0] [-0.1, +20.9] [+10.2, +20.0]

↪→ US -$13.5 +$10.7 +$9.4 +$8.7
[-19.2, -7.2] [+3.4, +29.9] [+1.9, +17.6] [+6.9, +11.7]

↪→ China -$2.2 +$7.3 +$1.1 +$1.5
[-5.1, +3.2] [+3.4, +10.1] [-1.0, +5.2] [+0.9, +1.8]

Consumer surplus, per capita +$2.3 -$0.4 -$2.4 -$19.2
[-2.6, +11.9] [-1.8, +0.7] [-13.4, +4.5] [-80.3, -0.1]

↪→ US +$1.3 -$0.2 -$7.8 -$80.1
[-7.6, +10.2] [-0.9, +4.4] [-35.9, +6.0] [-249.6, -9.1]

↪→ China +$8.0 -$0.8 -$2.3 -$21.0
[-7.2, +40.3] [-9.4, +1.5] [-28.0, +28.8] [-120.7, +10.0]

This table reports results from the same simulations as Table 5, but with firms optimizing website quality. Costs
and marginal revenue are winsorized as described in Footnotes 67 and 72. Profit is the maximum from (19). Per
capita consumer surplus for I ′

t ⊆ It is τ̂ ×
(∑

i∈I′
t

∑
m∈M Qimt log

∑
j∈Jmt

exp V̂ijt

)
÷ U ′

t where τ̂ is the dollar

conversion factor from Appendix I, Qimt =
∑

j∈Jmt
Qijt, and U ′

t is the number of internet users with types in
I ′
t. In brackets, 95% confidence intervals are from 80 bootstrap samples that account for the same sources of

uncertainty as those in Table 5.

45

In the top two panels, policy impacts on investment and costs remain qualitatively simi-

lar. Tightened restrictions in China prove ineffective and raise global costs, while heightened

subsidies are more effective in promoting domestic OSS investment and generate large inno-

vation spillovers that reduce costs. Quantitatively, firms in the new baseline simulation tend

to invest more in OSS,75 leading to larger investment incentives and hence differently-scaled

dollar impacts. Chinese policies tend to have larger effects, while US and global subsidies

have a more muted impact per dollar of subsidy.

In the bottom panel, I report changes in firm profit per dollar of incentive. Cost increases

from tightened restrictions translate almost directly into profit reductions. However, firms

are able to slightly compound cost reductions from OSS subsidies into greater profit increases

by adjusting their profit-maximizing choices between using in-house software and OSS.

Lastly, I report changes in per capita consumer surplus. The point estimates are neg-

ative under heightened subsidies because the estimated effect of OSS on quality, β̂S < 0,

is negative, and subsidies encourage firms to use more OSS. However, since the confidence

interval for β̂S includes zero, the confidence intervals for changes in consumer surplus gener-

ally include zero as well. This uncertainty may reflect a combination of weak internet user

responses to OSS use and noise in my web traffic data.

The clearest conclusion from my results for OSS policy is its impact on firm costs. Again,

this is an empirical finding, not guaranteed by the model. For example, if β̂S were strongly

positive, I find in Appendix Table N3 that business stealing would offset cost reductions

and nearly eliminate profit gains from global subsidies. International competition also plays

a role—in the same table, I find that replacing consumer “home bias” with equally strong

“foreign bias” increases consumers’ ability to avoid lower-quality websites, reducing consumer

surplus losses, and weakens firms’ ability to compound lower costs into higher profit.

8. Conclusion

OSS is privately provided knowledge at the core of most codebases. As OSS policies in China

and elsewhere become more common, understanding their economic effects grows increasingly

important. My model indicates that these effects depend empirically on how private benefits

compare to the strength and localization of public benefits from OSS. In the web development

For estimation, I normalize Vi0t(ξt) = 0 for the outside option j = 0 in each market m. For simulations, I
set Vi0t(ξt) so that Qi0t(ξt) in (14) remains fixed—if the quality of all in-sample websites increases, so does
the quality of the outside alternative, including out-of-sample websites.

75The model does not perfectly rationalize the data, so even with the adjustment in Footnote 73, firms’
equilibrium choices differ when they are allowed to maximize profit.

46

industry alone, my simulations indicate that restrictions on OSS investment can greatly raise

firm costs, while subsidies can generate large innovation spillovers. Interventions can be cheap

because OSS investment is rare, but valuable because OSS use is widespread.

Since web development represents only a fraction of overall OSS investment, my findings

suggest that the stakes may be high for OSS policy on a broader scale. I focus on web devel-

opment because it is a large industry where, unusually, software use is directly observable.

Effects of OSS policies are likely to differ in other high-tech industries, especially those where

product quality responds strongly to the use of OSS.

Data on OSS use is crucial for better understanding its value for firms and consumers,

and for efficiently targeting subsidies. As more data becomes available, my model-based

empirical strategy could be adapted to study OSS more broadly. It could also serve as a

starting point for richer models of privately provided knowledge—including OSS, open data,

and other forms of basic innovation—that more directly incorporate the incentives of workers

in competitive labor markets, upstream producers, or other motivations of governments, such

as national security.

References

Acemoglu, D., G. Anderson, D. Beede, C. Buffington, E. Childress, E. Dinlersoz, L. Foster, N. Goldschlag,
J. Haltiwanger, Z. Kroff, P. Restrepo, and N. Zolas (2024). Automation and the workforce: A firm-level
view from the 2019 Annual Business Survey.

Ackerberg, D. A. (2009). A new use of importance sampling to reduce computational burden in simulation
estimation. Quantitative Marketing and Economics 7 (4), 343–376.

Ackerberg, D. A. (2023). Timing assumptions and efficiency: Empirical evidence in a production function
context. Journal of Industrial Economics 71 (3), 644–674.

Ackerberg, D. A., K. Caves, and G. Frazer (2015). Identification properties of recent production function
estimators. Econometrica 83 (6), 2411–2451.

Ackerberg, D. A., G. Frazer, K. il Kim, Y. Luo, and Y. Su (2023). Under-identification of structural models
based on timing and information set assumptions. Journal of Econometrics 237 (1), 105463.

Ackermann, K. and S. Greenstein (2024). The state of web server software: Determinants of worldwide
dispersion in use.

Angelopoulos, A. N., S. Bates, C. Fannjiang, M. I. Jordan, and T. Zrnic (2023). Prediction-powered inference.
Science 382 (6671), 669–674.

Arellano, M. and O. Bover (1995). Another look at the instrumental variable estimation of error-components
models. Journal of Econometrics 68 (1), 29–51.

Associated Press (2021). Encrypted messaging app Signal blocked in China. NBC News.

Azar, J. A., S. T. Berry, and I. Marinescu (2022). Estimating labor market power.

Bai, J., P. J. Barwick, S. Cao, and S. Li (2022). Quid pro quo, knowledge spillover, and industrial quality
upgrading: Evidence from the Chinese auto industry.

Bakshy, E., L. Dworkin, B. Karrer, K. Kashin, B. Letham, A. Murthy, and S. Singh (2018). AE: A domain-

47

agnostic platform for adaptive experimentation. In Conference on Neural Information Processing Systems,
pp. 1–8.

Balandat, M., B. Karrer, D. R. Jiang, S. Daulton, B. Letham, A. G. Wilson, and E. Bakshy (2019). BoTorch:
Programmable Bayesian optimization in PyTorch.

Barwick, P. J., S. Cao, and S. Li (2021). Local protectionism, market structure, and social welfare: China’s
automobile market. American Economic Journal: Economic Policy 13 (4), 112–151.

Barwick, P. J., M. Kalouptsidi, and N. B. Zahur (2019). China’s industrial policy: An empirical evaluation.

Batra, H., A. Michaud, and S. Mongey (2023). Online job posts contain very little wage information.

Berry, S., J. Levinsohn, and A. Pakes (1995). Automobile prices in market equilibrium. Econometrica 63 (4),
841–890.

Berry, S., J. Levinsohn, and A. Pakes (2004). Differentiated products demand systems from a combination
of micro and macro data: The new car market. Journal of Political Economy 112 (1), 68–105.

Blind, K., S. Pätsch, S. Muto, M. Böhm, T. Schubert, P. Grzegorzewska, and A. Katz (2021). The impact of
open source software and hardware on technological independence, competitiveness and innovation in the
EU economy. Publications Office of the European Union. European Commission, Directorate-General for
Communications Networks, Content and Technology.

Blondel, M., Q. Berthet, M. Cuturi, R. Frostig, S. Hoyer, F. Llinares-López, F. Pedregosa, and J.-P. Vert
(2022). Efficient and modular implicit differentiation. Advances in neural information processing sys-
tems 35, 5230–5242.

Bloom, N., M. Schankerman, and J. Van Reenen (2013). Identifying technology spillovers and product
market rivalry. Econometrica 81 (4), 1347–1393.

Bloom, N., J. Van Reenen, and H. Williams (2019). A toolkit of policies to promote innovation. Journal of
Economic Perspectives 33 (3), 163–184.

Blundell, R. and S. Bond (1998). Initial conditions and moment restrictions in dynamic panel data models.
Journal of Econometrics 87 (1), 115–143.

Blundell, R. and S. Bond (2000). GMM estimation with persistent panel data: An application to production
functions. Econometric Reviews 19 (3), 321–340.

Boehm, B. W. (1984). Software engineering economics. IEEE transactions on Software Engineering SE-
10 (1), 4–21.

Boehm, B. W., C. Abts, A. W. Brown, S. Chulani, B. K. Clark, E. Horowitz, R. Madachy, D. J. Reifer, and
B. Steece (2009). Software cost estimation with COCOMO II. Prentice Hall Press.

Boysel, S., M. Hoffmann, and F. Nagle (2024). Labor competition and open innovation.

Bradbury, J., R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin, G. Necula, A. Paszke, J. Vander-
Plas, S. Wanderman-Milne, and Q. Zhang (2018). JAX: Composable transformations of Python+NumPy
programs. http://github.com/google/jax.

Brynjolfsson, E., A. Collis, and F. Eggers (2019). Using massive online choice experiments to measure
changes in well-being. Proceedings of the National Academy of Sciences 116 (15), 7250–7255.

Brynjolfsson, E., A. Collis, A. Liaqat, D. Kutzman, H. Garro, D. Deisenroth, N. Wernerfelt, and J. J. Lee
(2023). The digital welfare of nations: New measures of welfare gains and inequality.

Bureau of Labor Statistics (2022). May 2022 national occupational employment and wage estimates. https:
//www.bls.gov/oes/2022/may/oes nat.htm.

Center for Security and Emerging Technology (2023). Fireside chat with Under Secretary of Commerce Alan
Estevez. https://cset.georgetown.edu/event/cset-to-host-under-secretary-of-commerce-ala
n-estevez.

Chandel, S., Z. Jingji, Y. Yunnan, S. Jingyao, and Z. Zhipeng (2019). The Golden Shield Project of China:

48

http://github.com/google/jax
https://www.bls.gov/oes/2022/may/oes_nat.htm
https://www.bls.gov/oes/2022/may/oes_nat.htm
https://cset.georgetown.edu/event/cset-to-host-under-secretary-of-commerce-alan-estevez
https://cset.georgetown.edu/event/cset-to-host-under-secretary-of-commerce-alan-estevez

A decade later—An in-depth study of the Great Firewall. In International Conference on Cyber-Enabled
Distributed Computing and Knowledge Discovery, pp. 111–119.

Chen, T. and C. Guestrin (2016). XGBoost: A scalable tree boosting system. In Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 785–794.

Chevalier, J. and A. Goolsbee (2003). Measuring prices and price competition online: Amazon.com and
BarnesandNoble.com. Quantitative Marketing and Economics 1, 203–222.

Coe, D. T. and E. Helpman (1995). International R&D spillovers. European Economic Review 39 (5),
859–887.

Conlon, C. and J. Gortmaker (2020). Best practices for differentiated products demand estimation with
PyBLP. RAND Journal of Economics 51 (4), 1108–1161.

Conlon, C. and J. Gortmaker (2024). Incorporating micro data into differentiated products demand estima-
tion with PyBLP.

Conneau, A., K. Khandelwal, N. Goyal, V. Chaudhary, G. Wenzek, F. Guzmán, E. Grave, M. Ott, L. Zettle-
moyer, and V. Stoyanov (2019). Unsupervised cross-lingual representation learning at scale.

Conti, A., V. Gupta, J. Guzman, and M. P. Roche (2023). Incentivizing innovation in open source: Evidence
from the GitHub Sponsors program.

Conti, A., C. Peukert, and M. P. Roche (2021). Beefing it up for your investor? Open sourcing and startup
funding: Evidence from GitHub.

Daulton, S., S. Ament, D. Eriksson, M. Balandat, and E. Bakshy (2023). Unexpected improvements to
expected improvement for Bayesian optimization. In Proceedings of the 37th International Conference on
Neural Information Processing Systems, pp. 20577–20612.

Department of Defence (2022). Software development and open source software. https://dodcio.defense
.gov/Portals/0/Documents/Library/SoftwareDev-OpenSource.pdf.

Dushnitsky, G. and B. K. Stroube (2021). Low-code entrepreneurship: Shopify and the alternative path to
growth. Journal of Business Venturing Insights 16, e00251.

Economides, N. and E. Katsamakas (2006). Two-sided competition of proprietary vs. open source technology
platforms and the implications for the software industry. Management Science 52 (7), 1057–1071.

Filasto, A. and J. Appelbaum (2012). OONI: Open observatory of network interference. In 2nd USENIX
Workshop on Free and Open Communications on the Internet. USENIX Association.

Financial Accounting Standards Board (2024). Accounting for and disclosure of software costs: Project
update. https://fasb.org/projects/current-projects/accounting-for-and-disclosure-of-so

ftware-costs-401660.

Flynn, R., B. Glennon, R. Murciano-Goroff, and J. Xiao (2024). Building a wall around science: The effect
of US-China tensions on international scientific research.

Frazier, P. I., W. B. Powell, and S. Dayanik (2008). A knowledge-gradient policy for sequential information
collection. SIAM Journal on Control and Optimization 47 (5), 2410–2439.

Gabaix, X. and R. Ibragimov (2011). Rank − 1/2: A simple way to improve the OLS estimation of tail
exponents. Journal of Business & Economic Statistics 29 (1), 24–39.

Gablonsky, J. M. and C. T. Kelley (2001). A locally-biased form of the DIRECT algorithm. Journal of
Global Optimization 21, 27–37.

Gitee (2024). About us. https://gitee.com/about-us.

GitHub (2023a). Innovation graph. https://innovationgraph.github.com.

GitHub (2023b). Octoverse: The state of open source and rise of AI in 2023. https://github.blog/2023
-11-08-the-state-of-open-source-and-ai.

GitHub (2024). About GitHub. https://github.com/about.

49

https://dodcio.defense.gov/Portals/0/Documents/Library/SoftwareDev-OpenSource.pdf
https://dodcio.defense.gov/Portals/0/Documents/Library/SoftwareDev-OpenSource.pdf
https://fasb.org/projects/current-projects/accounting-for-and-disclosure-of-software-costs-401660
https://fasb.org/projects/current-projects/accounting-for-and-disclosure-of-software-costs-401660
https://gitee.com/about-us
https://innovationgraph.github.com
https://github.blog/2023-11-08-the-state-of-open-source-and-ai
https://github.blog/2023-11-08-the-state-of-open-source-and-ai
https://github.com/about

Gonzalez-Barahona, J. M., G. Robles, R. Andradas-Izquierdo, and R. A. Ghosh (2008). Geographic origin
of libre software developers. Information Economics and Policy 20 (4), 356–363.

Gortmaker, J., J. Jeffers, and M. Lee (2023). Labor reactions to credit deterioration: Evidence from LinkedIn
activity.

Gousios, G. and D. Spinellis (2012). GHTorrent: GitHub’s data from a firehose. In 9th IEEE Working
Conference on Mining Software Repositories, pp. 12–21.

Greenstein, S. and F. Nagle (2014). Digital dark matter and the economic contribution of Apache. Research
Policy 43 (4), 623–631.

Grigorik, I. (2024). GH Archive. https://www.gharchive.org.

Griliches, Z. (1979). Issues in assessing the contribution of research and development to productivity growth.
Bell Journal of Economics 10 (1), 92–116.

Griliches, Z. (1992). The search for R&D spillovers. Scandinavian Journal of Economics 94, S29–S47.

Grossman, G. M. and E. Helpman (1991). Trade, knowledge spillovers, and growth. European Economic
Review 35 (2-3), 517–526.

Haklay, M. and P. Weber (2008). OpenStreetMap: User-generated street maps. IEEE Pervasive Comput-
ing 7 (4), 12–18.

Hamilton, A. (1791). Report on manufactures. In H. C. Syrett (Ed.), The papers of Alexander Hamilton,
Volume 10, pp. 302–304. Columbia University Press.

Heckman, J. (1978). Simple statistical models for discrete panel data developed and applied to test the
hypothesis of true state dependence against the hypothesis of spurious state dependence. Annales de
l’inséé 30/31, 227–269.

Heckman, J. J. (1981). Statistical models for discrete panel data. In C. F. Manski and D. McFadden (Eds.),
Structural analysis of discrete data with econometric applications, pp. 114–178. MIT Press.

Hoffmann, M., S. Boysel, F. Nagle, S. Peng, and K. Xu (2024). Generative AI and distributed work: Evidence
from open source software.

Hoffmann, M., F. Nagle, and Y. Zhou (2024). The value of open source software.

Jaffe, A. B., M. Trajtenberg, and R. Henderson (1993). Geographic localization of knowledge spillovers as
evidenced by patent citations. Quarterly Journal of Economics 108 (3), 577–598.

Jiang, B. (2024). Alibaba says its Tongyi Qianwen AI models are used by over 90,000 corporate clients in
China. South China Morning Post.

Johnson, G. A., S. K. Shriver, and S. G. Goldberg (2023). Privacy and market concentration: Intended and
unintended consequences of the GDPR. Management Science 69 (10), 5695–5721.

Jones, D. R., C. D. Perttunen, and B. E. Stuckman (1993). Lipschitzian optimization without the Lipschitz
constant. Journal of Optimization Theory and Applications 79, 157–181.

Joulin, A., E. Grave, P. Bojanowski, M. Douze, H. Jégou, and T. Mikolov (2016). FastText.zip: Compressing
text classification models.

Juhász, R., N. Lane, and D. Rodrik (2023). The new economics of industrial policy. Annual Review of
Economics 16, 213–242.

Kalliamvakou, E., G. Gousios, K. Blincoe, L. Singer, D. M. German, and D. Damian (2016). An in-depth
study of the promises and perils of mining GitHub. Empirical Software Engineering 21, 2035–2071.

Kalouptsidi, M. (2018). Detection and impact of industrial subsidies: The case of Chinese shipbuilding.
Review of Economic Studies 85 (2), 1111–1158.

Kumar, V., B. R. Gordon, and K. Srinivasan (2011). Competitive strategy for open source software. Mar-
keting Science 30 (6), 1066–1078.

50

https://www.gharchive.org

Lakhani, K. R. and R. G. Wolf (2005). Why hackers do what they do: Understanding motivation and effort
in free/open source software projects. In Perspectives on free and open source software. MIT Press.

Lambrecht, A. and K. Misra (2017). Fee or free: When should firms charge for online content? Management
Science 63 (4), 1150–1165.

Lane, N. (2020). The new empirics of industrial policy. Journal of Industry, Competition and Trade 20 (2),
209–234.

Lerner, J. and M. Schankerman (2010). Assessing government policies toward software. In The comingled
code: Open source and economic development, pp. 206–208. MIT Press.

Lerner, J. and J. Tirole (2002). Some simple economics of open source. Journal of Industrial Eco-
nomics 50 (2), 197–234.

Lerner, J. and J. Tirole (2005). The economics of technology sharing: Open source and beyond. Journal of
Economic Perspectives 19 (2), 99–120.

Levinsohn, J. and A. Petrin (2003). Estimating production functions using inputs to control for unobserv-
ables. Review of Economic Studies 70 (2), 317–341.

Lewis, M. P., G. F. Simons, and C. D. Fennig (2016). Ethnologue: Languages of the world (19 ed.). SIL
International.

Li, X., Y. Zhang, C. Osborne, M. Zhou, Z. Jin, and H. Liu (2024). Systematic literature review of commercial
participation in open source software. ACM Transactions on Software Engineering and Methodology.

Llanes, G. and R. de Elejalde (2013). Industry equilibrium with open-source and proprietary firms. Inter-
national Journal of Industrial Organization 31 (1), 36–49.

Lostri, E., G. Wood, and M. Jain (2023). Government open source software policies. Center for Strategic
and International Studies.

McElheran, K., J. F. Li, E. Brynjolfsson, Z. Kroff, E. Dinlersoz, L. Foster, and N. Zolas (2024). AI adoption
in America: Who, what, and where. Journal of Economics & Management Strategy 33 (2), 375–415.

McFadden, D. (1989). A method of simulated moments for estimation of discrete response models without
numerical integration. Econometrica 57 (5), 995–1026.

Ministry of Industry and Information Technology (2017). Notice of the Ministry of Industry and Information
Technology on cleaning up and regulating the internet network access service market. https://www.mi

it.gov.cn/jgsj/xgj/gzdt/art/2020/art 6dd0e345bc3947b2a7c88509c4951cd0.html. Translated by
Google.

Ministry of Industry and Information Technology (2020). 2020 open source hosting platform project results
announcement. https://www.cec-ec.com.cn/cms/channel/1xmgg3/648.htm. Translated by Google.

Morrow, W. R. and S. Skerlos (2010). On the existence of Bertrand-Nash equilibrium prices under logit
demand.

Murciano-Goroff, R., R. Zhuo, and S. Greenstein (2021). Hidden software and veiled value creation: Illus-
trations from server software usage. Research Policy 50 (9), 104333.

Murciano-Goroff, R., R. Zhuo, and S. Greenstein (2024). Navigating software vulnerabilities: Eighteen years
of evidence from medium and large US organizations.

Musseau, J., J. S. Meyers, G. P. Sieniawski, C. A. Thompson, and D. German (2022). Is open source eating
the world’s software? Measuring the proportion of open source in proprietary software using Java binaries.
In Proceedings of the 19th International Conference on Mining Software Repositories, pp. 561–565.

Nagle, F. (2018). Learning by contributing: Gaining competitive advantage through contribution to crowd-
sourced public goods. Organization Science 29 (4), 569–587.

Nagle, F. (2019a). Government technology policy, social value, and national competitiveness.

Nagle, F. (2019b). Open source software and firm productivity. Management Science 65 (3), 1191–1215.

51

https://www.miit.gov.cn/jgsj/xgj/gzdt/art/2020/art_6dd0e345bc3947b2a7c88509c4951cd0.html
https://www.miit.gov.cn/jgsj/xgj/gzdt/art/2020/art_6dd0e345bc3947b2a7c88509c4951cd0.html
https://www.cec-ec.com.cn/cms/channel/1xmgg3/648.htm

Nagle, F., J. Dana, J. Hoffman, S. Randazzo, and Y. Zhou (2022). Census II of free and open source
software - Application libraries. Linux Foundation, Harvard Laboratory for Innovation Science, and the
Open Source Security Foundation.

Nagle, F., D. A. Wheeler, H. Lifshitz-Assaf, H. Ham, and J. Hoffman (2020). Report on the 2020 FOSS
contributor survey. Linux Foundation’s Core Infrastructure Initiative and the Laboratory for Innovation
Science at Harvard.

Naidu, S., E. A. Posner, and G. Weyl (2018). Antitrust remedies for labor market power. Harvard Law
Review 132 (2), 536–601.

National Science Foundation (2023). NSF invests over $26 million in open-source projects. https://new.

nsf.gov/tip/updates/nsf-invests-over-26m-open-source-projects.

Nesbitt, A. (2024). Ecosyste.ms: Roadmap. https://ecosyste.ms.

New York State Assembly (2021–2022). Bill A94. https://www.nysenate.gov/legislation/bills/202

1/A94.

Nocedal, J. and S. J. Wright (2006). Numerical optimization (2 ed.). Springer.

Olley, G. S. and A. Pakes (1996). The dynamics of productivity in the telecommunications equipment
industry. Econometrica 64 (6), 1263–1297.

Olson, M. (1965). The logic of collective action: Public goods and the theory of groups. Harvard University
Press.

Ortiz-Cordova, A. and B. J. Jansen (2012). Classifying web search queries to identify high revenue generating
customers. Journal of the American Society for Information Science and Technology 63 (7), 1426–1441.

Pakes, A. and D. Pollard (1989). Simulation and the asymptotics of optimization estimators. Economet-
rica 57 (5), 1027–1057.

Pigou, A. C. (1920). The economics of welfare. Macmillan.

Pochat, V. L., T. Van Goethem, S. Tajalizadehkhoob, M. Korczyński, and W. Joosen (2018). Tranco: A
research-oriented top sites ranking hardened against manipulation.

Protalinski, E. (2013). The Chinese government appears to be blocking GitHub via DNS. The Next Web.

Robbins, C., G. Korkmaz, L. Guci, J. B. S. Calderón, and B. Kramer (2021). A first look at open-source
software investment in the United States and in other countries, 2009-2019.

Rodrik, D. (2012). Why we learn nothing from regressing economic growth on policies. Seoul Journal of
Economics 25 (2), 137–151.

Rosenstein-Rodan, P. N. (1943). Problems of industrialisation of eastern and south-eastern Europe. Economic
Journal 53 (210-211), 202–211.

Roussille, N. and B. Scuderi (2024). Bidding for talent: A test of conduct in a high-wage labor market.

Schmeiser, S. (2015). The size distribution of websites. Economics Letters 128, 62–68.

Shiller, B., J. Waldfogel, and J. Ryan (2018). The effect of ad blocking on website traffic and quality. RAND
Journal of Economics 49 (1), 43–63.

Sokolova, A. and T. Sorensen (2021). Monopsony in labor markets: A meta-analysis. ILR Review 74 (1),
27–55.

Sonatype (2020). State of the software supply chain. https://www.sonatype.com/resources/white-pap
er-state-of-the-software-supply-chain-2020.

Stack Overflow (2019–2023). Annual developer survey. https://survey.stackoverflow.co.

Sundara Raman, R., P. Shenoy, K. Kohls, and R. Ensafi (2020). Censored Planet: An internet-wide,
longitudinal censorship observatory. In Proceedings of the 2020 ACM SIGSAC Conference on Computer
and Communications Security, pp. 49–66.

52

https://new.nsf.gov/tip/updates/nsf-invests-over-26m-open-source-projects
https://new.nsf.gov/tip/updates/nsf-invests-over-26m-open-source-projects
https://ecosyste.ms
https://www.nysenate.gov/legislation/bills/2021/A94
https://www.nysenate.gov/legislation/bills/2021/A94
https://www.sonatype.com/resources/white-paper-state-of-the-software-supply-chain-2020
https://www.sonatype.com/resources/white-paper-state-of-the-software-supply-chain-2020
https://survey.stackoverflow.co

Synopsys (2024). Open source security and risk analysis report. https://www.synopsys.com/blogs/sof

tware-security/open-source-trends-ossra-report.html.

Tambe, P., L. Hitt, D. Rock, and E. Brynjolfsson (2020). Digital capital and superstar firms.

The Economist (2024). Why are VPNs getting slower in China? https://www.economist.com/china/20

24/08/22/why-are-vpns-getting-slower-in-china.

The Guardian (2023). Chinese programmer ordered to pay 1m yuan for using virtual private network.
https://www.theguardian.com/world/2023/oct/09/chinese-programmer-ordered-to-pay-1m-yua

n-for-using-virtual-private-network.

Tiebout, C. M. (1956). A pure theory of local expenditures. Journal of Political Economy 64 (5), 416–424.

Trajtenberg, M. (1990). A penny for your quotes: Patent citations and the value of innovations. RAND
Journal of Economics 21 (1), 172–187.

US Congress (2022). H.R. 7178 - 117th Congress (2021–2022): CHIPS and Science Act. https://www.cong
ress.gov/bill/117th-congress/house-bill/4346.

Varadhan, R. and C. Roland (2008). Simple and globally convergent methods for accelerating the convergence
of any EM algorithm. Scandinavian Journal of Statistics 35 (2), 335–353.

Von Krogh, G. and E. Von Hippel (2006). The promise of research on open source software. Management
Science 52 (7), 975–983.

Wachs, J., M. Nitecki, W. Schueller, and A. Polleres (2022). The geography of open source software: Evidence
from GitHub. Technological Forecasting and Social Change 176, 121478.

White House (2022). Readout of White House meeting on software security. https://www.whitehouse.g

ov/briefing-room/statements-releases/2022/01/13/readout-of-white-house-meeting-on-soft

ware-security.

White House (2024). Fact sheet: Biden-Harris administration releases summary report of 2023 RFI on open
source software security initiative. https://www.whitehouse.gov/oncd/briefing-room/2024/08/09/f
act-sheet-biden-harris-administration-releases-end-of-year-report-on-open-source-softw

are-security-initiative-2.

Wollmann, T. G. (2018). Trucks without bailouts: Equilibrium product characteristics for commercial
vehicles. American Economic Review 108 (6), 1364–1406.

Wright, N. L., F. Nagle, and S. Greenstein (2023). Open source software and global entrepreneurship.
Research Policy 52 (9), 104846.

Wright, N. L., F. Nagle, and S. Greenstein (2024). Contributing to growth? The role of open source software
for global startups.

Wu, M., J. Sippe, D. Sivakumar, J. Burg, P. Anderson, X. Wang, K. Bock, A. Houmansadr, D. Levin, and
E. Wustrow (2023). How the Great Firewall of China detects and blocks fully encrypted traffic. In 32nd
USENIX Security Symposium, pp. 2653–2670.

Yang, Z. (2022). How censoring China’s open-source coders might backfire. MIT Technology Review.

Zhang, L. (2024). Identification and estimation of market size in discrete choice demand models.

Zrnic, T. and E. J. Candès (2024). Cross-prediction-powered inference. Proceedings of the National Academy
of Sciences 121 (15), e2322083121.

53

https://www.synopsys.com/blogs/software-security/open-source-trends-ossra-report.html
https://www.synopsys.com/blogs/software-security/open-source-trends-ossra-report.html
https://www.economist.com/china/2024/08/22/why-are-vpns-getting-slower-in-china
https://www.economist.com/china/2024/08/22/why-are-vpns-getting-slower-in-china
https://www.theguardian.com/world/2023/oct/09/chinese-programmer-ordered-to-pay-1m-yuan-for-using-virtual-private-network
https://www.theguardian.com/world/2023/oct/09/chinese-programmer-ordered-to-pay-1m-yuan-for-using-virtual-private-network
https://www.congress.gov/bill/117th-congress/house-bill/4346
https://www.congress.gov/bill/117th-congress/house-bill/4346
https://www.whitehouse.gov/briefing-room/statements-releases/2022/01/13/readout-of-white-house-meeting-on-software-security
https://www.whitehouse.gov/briefing-room/statements-releases/2022/01/13/readout-of-white-house-meeting-on-software-security
https://www.whitehouse.gov/briefing-room/statements-releases/2022/01/13/readout-of-white-house-meeting-on-software-security
https://www.whitehouse.gov/oncd/briefing-room/2024/08/09/fact-sheet-biden-harris-administration-releases-end-of-year-report-on-open-source-software-security-initiative-2
https://www.whitehouse.gov/oncd/briefing-room/2024/08/09/fact-sheet-biden-harris-administration-releases-end-of-year-report-on-open-source-software-security-initiative-2
https://www.whitehouse.gov/oncd/briefing-room/2024/08/09/fact-sheet-biden-harris-administration-releases-end-of-year-report-on-open-source-software-security-initiative-2

Appendices

A. GitHub and Gitee Data . 55

B. Website Data . 59

C. Traffic Data . 60

D. Detecting Software . 62

E. Matching Contributors and Firms . 70

F. Classifying Countries, Languages, and Markets . 74

G. Measuring OSS Investment . 77

H. Measuring In-House Investment . 81

I. Demand Estimation Details . 83

J. Production Function Estimation Details . 88

K. Supply Estimation Details . 93

L. Computational Details .100

M. Intuition from Stylized Models .104

N. Additional Policy Simulations .108

54

A. GitHub and Gitee Data

In this appendix, I explain how I create my data on public GitHub and Gitee activity, used

for aggregate statistics in Section 2 and the main dataset in Section 3. I describe the types

of OSS activity and how I collect them from GitHub and Gitee, focusing on web frameworks.

I also detail how I handle bot activity and measure user locations.

Activity Types. I collect data on six types of public activity on GitHub and Gitee,

representing the main ways OSS collaboration occurs. Users engage with repositories (repos),

also known as projects.

A “commit” is a change or update to a codebase, involving the addition, modification, or

deletion of code. A “pull request” (PR) is a collection of commits and a proposal to merge

these changes from one repo—usually temporary—into another. A “review” evaluates code

changes in a PR. An “issue” is a bug report, feature request, question, or task needing

attention. A “comment” follows up on a PR or issue. A “push” uploads one or more

commits from a local machine to a remote repo on GitHub or Gitee.76

Recently, GitHub’s “discussion” feature has begun to replace some of the functions pre-

viously handled by issues. Introduced near the end of my sample in late 2020, it has been

adopted slowly, so I do not collect data on discussions in this article. However, future work

may find it important to include them.

GHTorrent and GH Archive. My primary GitHub data come from GHTorrent (Gousios

and Spinellis, 2012) and GH Archive (Grigorik, 2024). Both datasets were built by query-

ing GitHub’s application programming interface (API) over several years. GH Archive only

archives data from GitHub’s public timeline, while GHTorrent, when active, also captured

additional information, including public user activity pages. The main downsides of GHTor-

rent are a data gap from July 2019 to January 2020 and its discontinuation in 2021. In

contrast, GH Archive has continuously archived GitHub data since 2011 with few gaps. I

combine data from both sources to create a unified dataset of GitHub activity.

From GHTorrent’s MongoDB files, I create separate datasets for users, organizations,

commits, issues, PRs, reviews, and comments. From GH Archive’s daily files, I create similar

datasets for commits, issues, PRs, reviews, comments, and pushes. Unlike GHTorrent,

GH Archive lacks detailed user or organization data but includes pushes. For commits,

76Since pushes are just bundles of commits, I only use them when comparing with GitHub’s Innovation
Graph data, discussed below.

55

issues, PRs, reviews, and comments, I keep the most recently archived version from either

GHTorrent or GH Archive. I de-duplicate using hashes for commits and GitHub IDs for

other activities.

Each activity observation includes a timestamp, the user who authored it, the repo where

it occurred, and other metadata. The only other metadata I use in this article is the text

content. Commits have messages; issues and PRs have titles and text bodies; reviews and

comments only have text bodies. I use this text data to create features for prediction in

Appendix F.

Gitee. There is no comprehensive dataset like GHTorrent or GH Archive for Gitee activity,

so I construct one by repeatedly querying Gitee’s public API. Unlike the GitHub API, the

Gitee API does not seem to strongly rate-limit requests, allowing me to build a Gitee dataset

with just one account.77

Since Gitee’s API is similar to GitHub’s, I can create close analogues to my GitHub

datasets. Specifically, I create separate datasets for users, commits, issues, PRs, reviews,

and comments. I de-duplicate using hashes for commits and Gitee IDs for other activities.

Activity for Web Frameworks. When combined, GHTorrent and GH Archive provide

good coverage of public GitHub activity since at least 2011, though coverage of older activity

is less comprehensive. This is not an issue for the aggregate statistics from 2018 to 2022 in

Section 2, but it does affect some web frameworks focused on in the rest of the article. Some

frameworks have activity going back many years.78 Capturing this early activity is crucial

for constructing stocks of intangible capital.

Compared to the millions of projects on GitHub, there are only a few web frameworks

that I focus on starting in Section 3. I list these frameworks, how I detect them on websites,

and how I manually match them to GitHub repos in Appendix D. No framework with enough

usage to be in my final sample has an active Gitee repo.

Although these frameworks’ repos are large and very active, there are few enough that I

can query GitHub’s API directly instead of relying on GHTorrent and GH Archive. Unlike

Gitee, GitHub has tight API rate limits. I query GitHub’s API for complete histories of

commits, issues, PRs, reviews, and comments on these web frameworks’ repos, and I also

gather up-to-date information on the authors’ user pages.

77This process involves running 40 parallel queries for nearly a month.
78For example, the first commit to Ruby on Rails, a popular backend framework, was authored in 2004.

56

Bot Detection. Some activity on GitHub and Gitee is authored by bot accounts rather

than human users. Some of this bot activity aligns with how this article defines OSS

investment—the joint choice of a firm and its workers to improve a codebase—while some is

just noise. For example, actual OSS investment includes old commits automatically moved

from an older repo to a primary one. Noise includes a pet project that automatically commits

every second to update a clock. While only a small fraction of GitHub and Gitee accounts

generate automated activity, it can still influence aggregate statistics.

The web framework repos I focus on maintain high-quality standards for activity. I find

that the maintainers of these frameworks self-police bot activity, so there is little noise in

my primary sample. However, some users exhibit unusually high activity in short periods. I

manually review these cases and generally find automated movements of code or issues, like

the example above. I reclassify timestamps and authors as needed and discard clearly noisy

activity, such as code coverage reports.

Manually checking unusually high activity rates across all GitHub and Gitee repos is

infeasible, so I use a different approach for the aggregate statistics in Section 2. I focus on

monthly active contributors because this measure is largely unaffected by bot activity—a

single bot might artificially inflate global commit counts by 10%, but it still counts as just

one among millions of contributors.

The one statistic significantly impacted by how I handle bots is the numerator in my

country and quarter-level measure of pushes per monthly active user, which I use to re-

scale data from GitHub’s Innovation Graph, discussed below. When calculating pushes per

country-quarter, I follow GitHub’s method for the Innovation Graph, discarding (i) any

user-quarter with more pushes than a reasonable human threshold,79 and (ii) users flagged

as bots in GHTorrent’s archived API queries.

Filling in Missing Users. Since GH Archive does not collect user page information,

geocoding a significant portion of GitHub activity after GHTorrent’s discontinuation in 2021

is challenging. For instance, if the author of a 2022 commit never had their user page archived

by GHTorrent, it is difficult to assign a country to that commit based on the author’s self-

reported location. To address this, I query GitHub’s API for the public user pages of roughly

16 million GitHub users in my combined GHTorrent-GH Archive dataset through mid-2023

whose pages were not archived by GHTorrent.80

79I use GitHub’s cutoff but cannot report the exact number to prevent “gaming” of the Innovation Graph.
80Since GitHub’s API is rate-limited, this required several volunteers and weeks of repeated queries.

57

Geocoding User Locations. Many GitHub users list their location on their public pro-

files, especially those who are very active, whose profiles are usually well-detailed. However,

these locations are in plain text and need to be geocoded to systematically assign activity

to different countries.

For most users, I rely on GHTorrent, which geocodes locations using OpenStreetMap

(Haklay and Weber, 2008) for all archived GitHub profiles in its MySQL dataset. For

missing profiles that I retrieve from GitHub’s API, I use the GHTorrent-geocoded location

if the text matches an archived user’s location. Otherwise, I query OpenStreetMap myself.

While highly active GitHub users often self-report their locations, many leave the location

field blank, and some locations cannot be geocoded by OpenStreetMap. For the aggregate

statistics in Section 2 on active user counts by country, I assume no systematic bias in self-

reporting and scale the country shares of contributors who self-report locations by the total

number of contributors. For web framework contributors in my primary sample, I use a more

detailed classification process described in Appendix F.

Innovation Graph Comparisons. A concern with using self-reported locations is that

self-reporting rates may systematically differ across countries and user characteristics. For

example, if active contributors in China are less likely to self-report their location than those

in the US, my estimate of GitHub users in China in Section 2 would be biased downward.

To address this, I incorporate data from GitHub’s Innovation Graph (GitHub, 2023a).

Released in 2023, the Innovation Graph reports aggregated GitHub statistics at the country-

quarter level, dating back to 2020. Its main advantages over my combined GHTorrent and

GH Archive data are ease of use and, crucially, the geocoding of users based on Internet

Protocol (IP) addresses rather than self-reported locations.

The Innovation Graph does not report monthly active contributors, my preferred bot-

resistant activity measure, but it does report the number of pushes per country-quarter,

filtered using the fixed push cutoff mentioned earlier. Using self-reported locations and the

same cutoff, I compute the average number of pushes per monthly active contributor at the

country-quarter level and use these ratios to convert GitHub’s IP-based push data into an

IP-based measure of monthly active contributors.

In Figure 2, the close alignment of the self-reported and IP-based lines for the US and

China before 2021 suggests self-reporting does not differ systematically between the two

countries. As discussed in Section 2, the 2021 divergence of the China line likely reflects

increased use of virtual private networks (VPNs).

58

B. Website Data

In this appendix, I describe my data on website homepages from Common Crawl, a nonprofit

that regularly archives much of the internet. I ensure proper handling of redirects to improve

coverage rates.

Archives. My primary sample begins in 2014 when Common Crawl started archiving the

web on a roughly monthly basis. For each monthly crawl, I download archived homepages

for all websites that ever appear on Alexa’s top 10,000 list at any point during my sample

period. I describe Alexa in Appendix C. I discard archives without HTTP response codes

of 200 or text/HTML content types. If multiple homepages exist for the same website in a

given crawl, I use the earliest one archived.

Redirects. For most websites, requesting their top-level domain’s (TLD) archive from

Common Crawl is sufficient.81 However, some TLDs redirect to another, non-top-level ad-

dress, which is the actual homepage. I follow these redirects to improve coverage.

I handle two types of redirects: server-side and client-side. Server-side redirects are

indicated by HTTP response codes starting with 3. When a TLD archive has such a code,

I identify the redirected URL and use its archive if available in the same crawl. Client-side

redirects occur within the user’s browser when loading the website. I search the archived

HTML for meta refreshes and JavaScript-based redirects, identify the target URL, and use

its archive when available.

Coverage. I report monthly Common Crawl coverage rates in Appendix Figure B1, sepa-

rately for websites ranked 1–99 in that month, 100–999, and 1,000–10,000. Coverage averages

around 80%, and is slightly higher for higher-traffic websites.

When Common Crawl fails to archive a homepage, I use the previous month’s informa-

tion. Ultimately, I work with yearly data, using the earliest homepage available for each

year. This approach mitigates issues from the few months without crawls. Websites change

little month-to-month, so when in the year to take a snapshot matters little. From my final

sample, I discard 8% of websites without a valid archived homepage.

81For example, downloading the homepage for Google.com is straightforward by using the first record in
a crawl with that TLD.

59

Appendix Figure B1: Common Crawl Coverage Rates

2015 2016 2017 2018 2019 2020 2021 2022 2023
0%

20%

40%

60%

80%

100%
Co

m
m

on
 C

ra
wl

 C
ov

er
ag

e

Ranks 1 99
Ranks 100 999
Ranks 1,000 10,000

This figure reports the monthly percentage of Alexa top 10,000 websites for which I successfully obtain an
archived homepage from Common Crawl, broken down by Alexa rank group. Gaps in the lines represent
months when Common Crawl did not perform any crawls.

C. Traffic Data

In this appendix, I describe my data on website traffic from Alexa, which I use to identify

the world’s most visited websites and, following Chevalier and Goolsbee (2003), to measure

their traffic over time. Acquired by Amazon in 1999,82 Alexa Internet offered various web

traffic analysis services until it was discontinued in 2022.

Global Traffic Ranks. Alexa is best known for its publicly available global traffic ranks.

It maintained a running list of the top 1 million websites globally, ranked by its estimate of

daily traffic. These traffic estimates were primarily derived from Alexa’s toolbar extension,

with additional data from other undisclosed extensions and traffic meters used by website

operators (Pochat et al., 2018; Shiller et al., 2018). Archived data from toplists.net.in.tum.de

covers 2009 to early 2023, but since my Common Crawl data starts in 2014, I only use Alexa

ranks from 2014 onward.

I follow Pochat et al. (2018) to aggregate daily traffic ranks into monthly ranks. For each

daily archive of Alexa’s top 1 million list, I assign Dowdall points based on the inverse of

ranks: rank 1 receives 1 point, rank 2 gets 0.5 points, and so on. I then sum the points for

each website within a month and re-rank them based on their monthly Dowdall points. This

process produces a more stable monthly ranking of websites.

82Alexa Internet is unrelated to Amazon’s virtual assistant, also called Alexa.

60

https://toplists.net.in.tum.de/

Appendix Table C1: Traffic Estimates

log(Traffic rank − 1/2)

−log(Visitor-days) 0.75
(0.01)

R2 0.64

Website-months 210,592
↪→ Websites 15,637
↪→ Months 24

This table reports results from the regression
estimating a power law relationship between
monthly traffic ranks and traffic in visitor-days.
The regression includes a fixed effect for each
month. The standard error (in parentheses) is

(2/n)1/2ζ̂ from Gabaix and Ibragimov (2011),
where n is conservatively taken as the number
of websites, not website-months.

Converting Ranks into Traffic. My estimation approach in Section 5 requires traffic

estimates for each website. While global Alexa traffic ranks were public, the underlying

traffic data was not, and historical access is now limited. To convert ranks into traffic

estimates, I follow Chevalier and Goolsbee (2003) and fit a power law relationship on a

shorter panel from 2018 to 2020 (used by Johnson et al., 2023), which provides monthly

traffic corresponding to those years’ ranks. Specifically, the data gives the share of the global

internet population visiting each site daily, which I scale using global internet population

data from the International Telecommunication Union.

Like many size distributions, web traffic follows a power law (Schmeiser, 2015). Denote

the traffic to website j by Qjt, measured in daily visits. Here, t denotes months. Also

denote the website’s global traffic rank #jt. I restrict the sample to 1 ≤ #jt ≤ 10,000. In

Appendix Table C1, I report results from the following regression, where I subtract one-half

to accurately estimate the Pareto coefficient (Gabaix and Ibragimov, 2011):

log(#jt − 1/2) = ω#
t − ζ logQjt + ε#jt. (C1)

Monthly fixed effects ω#
t account for time-varying changes in the global number of internet

users and the share of daily visits to the top 10,000 websites in my sample. The total number

of observations is slightly less than 24 × 10,000 because some websites lacked archived traffic

61

data; I found no clear pattern in the missing websites. I estimate a Pareto exponent of

ζ̂ = 0.75, which is somewhat lower than Schmeiser’s (2015) estimate of around one.83

Only global traffic ranks #jt are consistently available from 2014 to 2022. I estimate

monthly traffic using Q̂jt ∝ exp(− log(#jt − 1/2)/ζ̂).84 I choose a monthly proportionality

constant such that
∑

j Q̂jt = Ut × Dt × S, where the sum is over the top 10,000 websites

in month t, Ut is the global number of internet users in that year (from the International

Telecommunication Union), Dt is the number of days in the month, and S is the average

share of daily internet users visiting the top 10,000 websites over the 24 months of available

data. In my bootstrap procedure for all downstream estimation, I draw from the estimated

asymptotic distribution of ζ̂ and re-compute my traffic estimates for each bootstrap sample.

D. Detecting Software

In this appendix, I explain how I identify the software underlying each homepage archived

by Common Crawl. I also describe and list all the web frameworks that are the focus of the

main article.

Wappalyzer. I use Wappalyzer, a formerly open source application popular in industry

for lead generation.85 I prefer Wappalyzer over alternatives like BuiltWith because it is more

transparent and offers finer control.

Wappalyzer’s detection rules are clearly defined, using patterns that match source code

and browser metadata to software. Unlike other services (including Wappalyzer’s paid API),

which provide pre-built historical datasets of URLs and detected software, Wappalyzer can

be directly applied to Common Crawl archive files. This avoids concerns about detection

changes over time, which could lead to spurious changes in software use in a pre-built dataset

constructed over many years.

Three Approaches. I detect software with three approaches: (i) “static” detection, which

analyzes raw archived information, (ii) “dynamic” detection, which loads the archive into a

browser to apply additional matching patterns, and (iii) “online” detection, which allows the

browser to load external pages. I use the union of detections from (i) and (ii) to construct

83Schmeiser’s (2015) is based on 2014 data with three-month averages, rather than my one-month averages.
84I discard residuals ϵ̂#jt. I also discard fixed effects ω̂

#

t , which are only available for the shorter panel.
85Wappalyzer was open source on GitHub until August 2023, when it was made private. According to

discussions with its creator, this decision was motivated by free-riding from competitors. I use a community
continuation of the Wappalyzer project, which remains OSS (github.com/enthec/webappanalyzer).

62

https://github.com/enthec/webappanalyzer

my panel in Section 3.1. I only use (iii) to confirm that not loading external pages does not

significantly impact my ability to detect web frameworks.

I begin with a “static” approach, passing the archived URL, HTML, and headers to a

simpler version of Wappalyzer (github.com/kikobeats/simple-wappalyzer), which only uses

matching patterns that do not require a fully-loaded page in a browser. This method is

reliable but does not catch software that only becomes detectable after JavaScript is executed.

Next, I use a “dynamic” approach, loading the archive into a browser while blocking

outgoing network requests. I configure Wappalyzer to use a proxy that responds with the

archived HTML and headers but blocks all other network requests. Occasionally, this method

encounters unrecoverable browser errors;86 when this happens, I fall back to the static ap-

proach. The dynamic approach improves detection, reducing false negatives. For the 78

manually identified web frameworks discussed below, 26% of detections on website-months

ranked in the top 10,000 by Alexa would not have been caught by the static method alone.

Blocking network requests helps avoid false positives.87 However, this could increase false

negatives if a framework is only detectable by loading an external script. To check this, I use

an “online” approach, which loads the archive into a browser but allows outgoing network

requests. For the 78 web frameworks, only 14% of online detections on top 10,000-ranked

website-months are missed by the combined static and dynamic methods. Since some of this

14% likely includes false positives, blocking network requests does not seem to cause many

false negatives.

Web Frameworks. Wappalyzer is a large application capable of detecting thousands of

website features, many of which are niche. With the exception of Footnote 26, for which I col-

lect data on use of OSS and non-OSS servers, I focus on three key parts of websites: backend,

JavaScript, and user interface (UI) frameworks. These roughly correspond to Wappalyzer

categories of the same name.88

These Wappalyzer categories include some niche features, like JavaScript widgets and

extensions, which are not the focus of this article. I manually evaluate each feature detected

on at least one archived homepage in my sample and identify 78 “actual” web frameworks—

those with broad standalone functionality, not just extensions of larger frameworks. Of these,

27 account for 99% of detected usage. For nearly all website-years, only one framework is

86Wappalyzer uses the Chromium browser to handle HTML and headers.
87For instance, a homepage might load a script from an external URL that did not contain a web framework

when archived, but does today.
88The exception is that Wappalyzer labels “backend frameworks” as “web frameworks,” a term I use to

refer to all three parts collectively.

63

https://github.com/kikobeats/simple-wappalyzer

detected per part; in cases of multiple detections, I take the one with more overall usage.

Throughout the article, I focus on the 27 OSS frameworks with significant usage, listed in

Appendix Table D1. The remaining 78 frameworks with lower usage are listed in Appendix

Table D2. While many of Wappalyzer’s detected features are not OSS, the frameworks I

focus on are almost exclusively OSS. All 78 frameworks have fairly permissive licenses, which

are also listed in the tables.

On the right side of each table, I list the OSS repositories matched to each framework.

Most are on GitHub, though a few in Appendix Table D2 are on Gitee. For most frameworks,

the majority of activity takes place in a single repository, which I always include. If there is

a separate repository for documentation, I include that too, as it is an important component

of OSS projects. Some frameworks, like OpenResty, are spread across multiple repositories.

I do not match repositories that are unrelated to core functionality, such as plugins or

extensions.

Appendix Table D1: Web Frameworks with Significant Use in the Main Sample

Part Software License Matched Repositories

Backend ASP.NET MIT dotnet/aspnetcore

CakePHP MIT cakephp/cakephp

cakephp/docs

CodeIgniter MIT bcit-ci/codeigniter

codeigniter4/codeigniter4

Django BSD 3 Clause django/django

Express.js MIT expressjs/express

Laravel MIT laravel/framework

laravel/laravel

OpenResty BSD 2 Clause calio/form-input-nginx-module

calio/iconv-nginx-module

frickle/ngx postgres

openresty/array-var-nginx-module

openresty/echo-nginx-module

openresty/encrypted-session-nginx-module

openresty/headers-more-nginx-module

openresty/lua-cjson

openresty/lua-nginx-module

openresty/lua-rds-parser

openresty/lua-redis-parser

Continued on the next page.

64

https://www.asp.net
https://github.com/dotnet/aspnetcore
https://cakephp.org
https://github.com/cakephp/cakephp
https://github.com/cakephp/docs
https://codeigniter.com/
https://github.com/bcit-ci/codeigniter
https://github.com/codeigniter4/codeigniter4
https://djangoproject.com
https://github.com/django/django
https://expressjs.com/
https://github.com/expressjs/express
https://laravel.com
https://github.com/laravel/framework
https://github.com/laravel/laravel
https://openresty.org
https://github.com/calio/form-input-nginx-module
https://github.com/calio/iconv-nginx-module
https://github.com/frickle/ngx_postgres
https://github.com/openresty/array-var-nginx-module
https://github.com/openresty/echo-nginx-module
https://github.com/openresty/encrypted-session-nginx-module
https://github.com/openresty/headers-more-nginx-module
https://github.com/openresty/lua-cjson
https://github.com/openresty/lua-nginx-module
https://github.com/openresty/lua-rds-parser
https://github.com/openresty/lua-redis-parser

Continued from the previous page.

Part Software License Matched Repositories

openresty/lua-resty-core

openresty/lua-resty-dns

openresty/lua-resty-limit-traffic

openresty/lua-resty-lock

openresty/lua-resty-lrucache

openresty/lua-resty-memcached

openresty/lua-resty-mysql

openresty/lua-resty-redis

openresty/lua-resty-shell

openresty/lua-resty-signal

openresty/lua-resty-string

openresty/lua-resty-upload

openresty/lua-resty-upstream-healthcheck

openresty/lua-resty-websocket

openresty/lua-tablepool

openresty/lua-upstream-nginx-module

openresty/memc-nginx-module

openresty/openresty

openresty/opm

openresty/rds-csv-nginx-module

openresty/rds-json-nginx-module

openresty/redis2-nginx-module

openresty/set-misc-nginx-module

openresty/srcache-nginx-module

openresty/stream-lua-nginx-module

openresty/xss-nginx-module

vision5/ngx devel kit

Ruby on Rails MIT rails/rails

Spring Framework Apache 2.0 spring-projects/spring-framework

ThinkPHP Apache 2.0 top-think/framework

top-think/think

top-think/thinkphp

Yii BSD 3 Clause yiisoft/yii

yiisoft/yii2

JavaScript Angular MIT angular/angular

Angular.js MIT angular/angular.js

Continued on the next page.

65

https://github.com/openresty/lua-resty-core
https://github.com/openresty/lua-resty-dns
https://github.com/openresty/lua-resty-limit-traffic
https://github.com/openresty/lua-resty-lock
https://github.com/openresty/lua-resty-lrucache
https://github.com/openresty/lua-resty-memcached
https://github.com/openresty/lua-resty-mysql
https://github.com/openresty/lua-resty-redis
https://github.com/openresty/lua-resty-shell
https://github.com/openresty/lua-resty-signal
https://github.com/openresty/lua-resty-string
https://github.com/openresty/lua-resty-upload
https://github.com/openresty/lua-resty-upstream-healthcheck
https://github.com/openresty/lua-resty-websocket
https://github.com/openresty/lua-tablepool
https://github.com/openresty/lua-upstream-nginx-module
https://github.com/openresty/memc-nginx-module
https://github.com/openresty/openresty
https://github.com/openresty/opm
https://github.com/openresty/rds-csv-nginx-module
https://github.com/openresty/rds-json-nginx-module
https://github.com/openresty/redis2-nginx-module
https://github.com/openresty/set-misc-nginx-module
https://github.com/openresty/srcache-nginx-module
https://github.com/openresty/stream-lua-nginx-module
https://github.com/openresty/xss-nginx-module
https://github.com/vision5/ngx_devel_kit
https://rubyonrails.org/
https://github.com/rails/rails
https://spring.io/
https://github.com/spring-projects/spring-framework
http://www.thinkphp.cn
https://github.com/top-think/framework
https://github.com/top-think/think
https://github.com/top-think/thinkphp
https://www.yiiframework.com/
https://github.com/yiisoft/yii
https://github.com/yiisoft/yii2
https://angular.io
https://github.com/angular/angular
https://angularjs.org
https://github.com/angular/angular.js

Continued from the previous page.

Part Software License Matched Repositories

GWT Apache 2.0 gwtproject/gwt

Marko MIT marko-js/marko

React MIT facebook/react

Stimulus MIT hotwired/stimulus

hotwired/stimulus-rails

Vue MIT vuejs/core

vuejs/vue

User Interface Ant Design MIT ant-design/ant-design

Bootstrap MIT twbs/bootstrap

twbs/bootstrap-rubygem

twbs/bootstrap-sass

twbs/icons

Element UI MIT elemefe/element

Emotion.js MIT emotion-js/emotion

Foundation Sites MIT foundation/foundation-sites

MDL Apache 2.0 google/material-design-lite

Pure CSS BSD 3 Clause pure-css/pure

Styled Components MIT styled-components/jest-styled-components

styled-components/styled-components

styled-components/vue-styled-components

styled-components/xstyled

UIkit MIT uikit/uikit

This table lists the manually-classified web frameworks with significant use detected by Wappalyzer
in the main sample of top websites. All repositories are on GitHub.

66

https://www.gwtproject.org/
https://github.com/gwtproject/gwt
https://markojs.com
https://github.com/marko-js/marko
https://react.dev/
https://github.com/facebook/react
https://stimulus.hotwired.dev/
https://github.com/hotwired/stimulus
https://github.com/hotwired/stimulus-rails
https://vuejs.org
https://github.com/vuejs/core
https://github.com/vuejs/vue
https://ant.design/
https://github.com/ant-design/ant-design
https://getbootstrap.com
https://github.com/twbs/bootstrap
https://github.com/twbs/bootstrap-rubygem
https://github.com/twbs/bootstrap-sass
https://github.com/twbs/icons
https://element.eleme.io/
https://github.com/elemefe/element
https://emotion.sh
https://github.com/emotion-js/emotion
https://get.foundation/
https://github.com/foundation/foundation-sites
https://getmdl.io/
https://github.com/google/material-design-lite
https://purecss.io/
https://github.com/pure-css/pure
https://styled-components.com
https://github.com/styled-components/jest-styled-components
https://github.com/styled-components/styled-components
https://github.com/styled-components/vue-styled-components
https://github.com/styled-components/xstyled
https://getuikit.com/
https://github.com/uikit/uikit

Appendix Table D2: Web Frameworks Below the Use Cutoff

Part Software License Matched Repositories

Backend Adonis MIT adonisjs/core

adonisjs/legacy-docs

Akka HTTP Apache 2.0 akka/akka-http

Apache Wicket Apache 2.0 apache/wicket

CherryPy BSD 3 Clause cherrypy/cherrypy

cherrypy/cherrypy-obsolete

F3 GPL 3.0 bcosca/fatfree

Flask BSD 3 Clause pallets/flask

Frappe MIT frappe/frappe

Koa MIT koajs/koa

Lift Framework Apache 2.0 lift/framework

lift/lift

lift/modules

Macaron Apache 2.0 go-macaron/authz

go-macaron/bindata

go-macaron/binding

go-macaron/cache

go-macaron/captcha

go-macaron/csrf

go-macaron/gzip

go-macaron/i18n

go-macaron/macaron

go-macaron/method

go-macaron/oauth2

go-macaron/pongo2

go-macaron/renders

go-macaron/session

go-macaron/sockets

go-macaron/switcher

go-macaron/toolbox

rossmeier/piwik-middleware

xyproto/permissions2

Meteor MIT meteor/meteor

Mojolicious Artistic 2.0 Perl mojolicious/mojo

Mono MIT mono/mono

Neos Flow GPL 3.0 neos/flow-development-collection

Continued on the next page.

67

https://adonisjs.com
https://github.com/adonisjs/core
https://github.com/adonisjs/legacy-docs
https://akka.io
https://github.com/akka/akka-http
https://wicket.apache.org
https://github.com/apache/wicket
https://cherrypy.dev/
https://github.com/cherrypy/cherrypy
https://github.com/cherrypy/cherrypy-obsolete
http://fatfreeframework.com
https://github.com/bcosca/fatfree
https://palletsprojects.com/p/flask/
https://github.com/pallets/flask
https://frappeframework.com
https://github.com/frappe/frappe
https://koajs.com
https://github.com/koajs/koa
https://liftweb.net
https://github.com/lift/framework
https://github.com/lift/lift
https://github.com/lift/modules
https://go-macaron.com
https://github.com/go-macaron/authz
https://github.com/go-macaron/bindata
https://github.com/go-macaron/binding
https://github.com/go-macaron/cache
https://github.com/go-macaron/captcha
https://github.com/go-macaron/csrf
https://github.com/go-macaron/gzip
https://github.com/go-macaron/i18n
https://github.com/go-macaron/macaron
https://github.com/go-macaron/method
https://github.com/go-macaron/oauth2
https://github.com/go-macaron/pongo2
https://github.com/go-macaron/renders
https://github.com/go-macaron/session
https://github.com/go-macaron/sockets
https://github.com/go-macaron/switcher
https://github.com/go-macaron/toolbox
https://github.com/rossmeier/piwik-middleware
https://github.com/xyproto/permissions2
https://www.meteor.com
https://github.com/meteor/meteor
https://mojolicio.us
https://github.com/mojolicious/mojo
https://mono-project.com
https://github.com/mono/mono
https://flow.neos.io
https://github.com/neos/flow-development-collection

Continued from the previous page.

Part Software License Matched Repositories

Nette BSD 3 Clause nette/application

GPL 2.0 nette/bootstrap

GPL 3.0 nette/caching

nette/component-model

nette/database

nette/di

nette/forms

nette/http

nette/latte

nette/mail

nette/neon

nette/nette

nette/php-generator

nette/robot-loader

nette/routing

nette/safe-stream

nette/schema

nette/security

nette/tester

nette/tracy

nette/utils

Perl Dancer Artistic 1.0 Perl perldancer/dancer

GPL 1.0 or later perldancer/dancer2

Phoenix Framework MIT phoenixframework/phoenix

Play Framework Apache 2.0 playframework/play1

playframework/playframework

Revel MIT revel/revel

Sails.js MIT balderdashy/sails

balderdashy/sails-docs

Symfony MIT symfony/symfony

symfony/symfony-docs

Tornado Apache 2.0 tornadoweb/tornado

ZK LGPL 2.1 zkoss/zk

JavaScript Alpine MIT alpinejs/alpine

alpinejs/alpine-next

Aurelia MIT aurelia/framework

Continued on the next page.

68

https://nette.org
https://github.com/nette/application
https://github.com/nette/bootstrap
https://github.com/nette/caching
https://github.com/nette/component-model
https://github.com/nette/database
https://github.com/nette/di
https://github.com/nette/forms
https://github.com/nette/http
https://github.com/nette/latte
https://github.com/nette/mail
https://github.com/nette/neon
https://github.com/nette/nette
https://github.com/nette/php-generator
https://github.com/nette/robot-loader
https://github.com/nette/routing
https://github.com/nette/safe-stream
https://github.com/nette/schema
https://github.com/nette/security
https://github.com/nette/tester
https://github.com/nette/tracy
https://github.com/nette/utils
https://perldancer.org/
https://github.com/perldancer/dancer
https://github.com/perldancer/dancer2
https://www.phoenixframework.org
https://github.com/phoenixframework/phoenix
https://www.playframework.com
https://github.com/playframework/play1
https://github.com/playframework/playframework
https://revel.github.io
https://github.com/revel/revel
https://sailsjs.org
https://github.com/balderdashy/sails
https://github.com/balderdashy/sails-docs
https://symfony.com
https://github.com/symfony/symfony
https://github.com/symfony/symfony-docs
https://www.tornadoweb.org/
https://github.com/tornadoweb/tornado
https://zkoss.org
https://github.com/zkoss/zk
https://alpinejs.dev/
https://github.com/alpinejs/alpine
https://github.com/alpinejs/alpine-next
https://aurelia.io
https://github.com/aurelia/framework

Continued from the previous page.

Part Software License Matched Repositories

Ember.js MIT emberjs/ember-rails

emberjs/ember.js

emberjs/guides

Ext.js GPL 3.0 tremez/extjs-gpl

Inferno.js MIT infernojs/inferno

Knockout MIT knockout/knockout

knockout/tko

knockout/tko-policy

knockout/tko.provider

knockout/tko.utils

Livewire MIT livewire/livewire

Moon.js MIT kbrsh/moon

Right.js MIT rightjs/rightjs-core

Riot MIT riot/examples

riot/riot

Solid.js MIT solidjs/solid

Svelte MIT sveltejs/svelte

Wink Toolkit BSD 3 Clause winktoolkit/wink

ef.js MIT theneuronproject/ef-core

theneuronproject/ef.js

theneuronproject/eft-parser

User Interface Bulma MIT jgthms/bulma

Chakra UI MIT chakra-ui/chakra-ui

Layui MIT layui/layui†

layui/layui-vue†

layui/layui

layui/layui-vue

MDUI MIT zdhxiong/mdui†

zdhxiong/mdui

MUI MIT mui/material-ui

mui/material-ui-docs

Materialize MIT materializecss/materialize

materializecss/materialize-docs

Milligram MIT milligram/milligram

Ripple Apache 2.0 dpc-sdp/ripple

TDesign MIT tencent/tdesign

Continued on the next page.

69

https://emberjs.com
https://github.com/emberjs/ember-rails
https://github.com/emberjs/ember.js
https://github.com/emberjs/guides
https://www.sencha.com
https://github.com/tremez/extjs-gpl
https://infernojs.org
https://github.com/infernojs/inferno
https://knockoutjs.com
https://github.com/knockout/knockout
https://github.com/knockout/tko
https://github.com/knockout/tko-policy
https://github.com/knockout/tko.provider
https://github.com/knockout/tko.utils
https://laravel-livewire.com
https://github.com/livewire/livewire
https://moonjs.org/
https://github.com/kbrsh/moon
https://github.com/rightjs
https://github.com/rightjs/rightjs-core
https://riot.js.org/
https://github.com/riot/examples
https://github.com/riot/riot
https://www.solidjs.com/
https://github.com/solidjs/solid
https://svelte.dev
https://github.com/sveltejs/svelte
https://winktoolkit.org
https://github.com/winktoolkit/wink
https://ef.js.org
https://github.com/theneuronproject/ef-core
https://github.com/theneuronproject/ef.js
https://github.com/theneuronproject/eft-parser
https://bulma.io
https://github.com/jgthms/bulma
https://chakra-ui.com
https://github.com/chakra-ui/chakra-ui
https://layui.dev/
https://gitee.com/layui/layui
https://gitee.com/layui/layui-vue
https://github.com/layui/layui
https://github.com/layui/layui-vue
https://www.mdui.org
https://gitee.com/zdhxiong/mdui
https://github.com/zdhxiong/mdui
https://mui.com
https://github.com/mui/material-ui
https://github.com/mui/material-ui-docs
https://materializecss.com
https://github.com/materializecss/materialize
https://github.com/materializecss/materialize-docs
https://milligram.io
https://github.com/milligram/milligram
https://www.ripple.sdp.vic.gov.au/
https://github.com/dpc-sdp/ripple
https://tdesign.tencent.com
https://github.com/tencent/tdesign

Continued from the previous page.

Part Software License Matched Repositories

Tachyons MIT tachyons-css/tachyons

Tailwind CSS MIT tailwindlabs/tailwindcss

USWDS CC BY 1.0 uswds/uswds

UnoCSS MIT unocss/unocss

W3.CSS MIT janirefsnes/w3css

This table lists manually-classified web frameworks detected by Wappalyzer in the bottom 1%
of use in the main sample of top websites. Repositories with † superscripts are on Gitee rather
than GitHub.

E. Matching Contributors and Firms

In this appendix, I explain how I match GitHub contributors to their other online profiles and

how I link firms listed on these profiles to standard sources of firm and website information.

Both contributor and firm matching involve three-step processes, designed to ensure accurate

matches for most contributions while remaining practical. I match contributors first, then

use those results to guide the firm matching process.

Matching Data. I match GitHub, Gitee, and LinkedIn profiles of contributors. My

GitHub user profile data comes from GHTorrent and GitHub’s API, as discussed in Ap-

pendix A. Gitee data is directly from Gitee’s API, also covered in Appendix A. LinkedIn

profile data comes from a consolidated collection of 618 million individual profiles, gathered

through multiple scrapes of public information from 2016 through 2022. LinkedIn profiles

are especially valuable for providing cleaner data on contributor work histories compared to

GitHub and Gitee profiles.

I match firms listed on these profiles to information from LinkedIn, Orbis, Pitchbook,

Compustat, Lightcast, and WHOIS. The LinkedIn firm data comes from the consolidated

collection of scrapes, which includes 62 million company profiles. My data from Orbis,

Pitchbook, and Compustat is standard. Additionally, I use the Whoxy service to obtain

historical WHOIS domain registration records for all top-level domains with a monthly Alexa

rank of 10,000 or better at any point in my sample.89

89When fields are not censored for privacy, WHOIS records provide valuable information (on top of websites
linked in other sources) about the websites operated by the firms in my sample.

70

https://tachyons.io
https://github.com/tachyons-css/tachyons
https://tailwindcss.com/
https://github.com/tailwindlabs/tailwindcss
https://designsystem.digital.gov
https://github.com/uswds/uswds
https://unocss.dev/
https://github.com/unocss/unocss
https://www.w3schools.com/w3css/
https://github.com/janirefsnes/w3css

Step 1: Conservative Matching. First, I conservatively match using clean and unique

identifiers. Contributor identifiers include email addresses and usernames from GitHub, Gi-

tee, LinkedIn, Twitter, Facebook, Instagram, Weibo, and QQ. I treat usernames as platform-

specific because the same username on different platforms can belong to different people.

However, I also use a platform-agnostic username-name identifier, which matches profiles

with the same username and normalized name across platforms. I normalize text by con-

verting it to lowercase and removing excess whitespace.

Firm identifiers include firm names, LinkedIn text IDs, LinkedIn integer IDs, Orbis BvD

IDs, Pitchbook IDs, Compustat GVKEYs, Lightcast IDs, and top-level domains (TLDs).

LinkedIn text IDs appear in LinkedIn company page URLs, while their integer IDs consol-

idate some pages representing the same company. Like contributor identifiers, I normalize

firm names and TLDs by converting them to lowercase and removing extra whitespace.

These firm identifiers are less conservative than the identifiers I use to match contrib-

utors.90 To be cautious, I discard some firm identifier observations: names that map to

multiple organizations in my GitHub data; names that map to multiple LinkedIn text IDs in

my LinkedIn data; and names, LinkedIn text IDs, and TLDs that map to multiple BvD IDs

in Orbis, Pitchbook IDs, GVKEYs in Compustat, or Lightcast IDs. Similarly, for LinkedIn

profiles, I discard emails that map to multiple LinkedIn usernames to avoid false positives

For contributors, I create a dataset of identifiers by stacking observations from GitHub/

Gitee commits and GitHub/Gitee/LinkedIn user profiles. Commits link GitHub/Gitee au-

thor usernames with the emails used to author the commit. GitHub user profiles include

those archived by GHTorrent and additional profiles I request via GitHub’s API (described

in Appendix A). Besides social media profiles and emails, GitHub/Gitee profiles can include

unstructured URLs and biographies, which I programmatically search for emails and user-

names. For all GitHub users who contributed to one of the web frameworks in Appendix D,

I also download the HTML from any personal websites linked to their GitHub/Gitee profiles

and search the HTML for emails and usernames.

For firms, I create a similar dataset by stacking observations of top-ranked TLDs, com-

panies listed on GitHub/Gitee user profiles, GitHub organization profiles, LinkedIn/Orbis/

Pitchbook/Compustat/Lightcast company profiles, alternative company names from these

sources, lists of company social media usernames from Orbis/Pitchbook, LinkedIn work

experiences of matched contributors, and WHOIS registrants. I also include a manually-

constructed crosswalk from Gortmaker, Jeffers, and Lee (2023) linking Compustat firms to

90For example, two different firms could have the same generic name.

71

their LinkedIn company pages. GitHub user profiles can list a company name or its GitHub

organization, and some users provide their company’s URL, from which I extract the TLD.

Organization and company profiles supply TLDs and primary names, while LinkedIn work

experiences provide alternative company names for LinkedIn IDs. From WHOIS data, I use

the company name when available, and otherwise the full contact name, removing question

marks indicating censored information.

Each stacked dataset of identifiers forms an undirected graph, with each observation link-

ing one or more identifiers. The connected components of the graph represent contributors

or firms. To compute these connected components, I use a straightforward but inefficient

procedure. I begin by treating each observation as a separate contributor or firm, then it-

eratively group observations by each identifier, assigning them to the same contributor or

firm, and repeat until assignments converge. This results in two conservative mappings: one

linking contributors’ online profiles and the other linking firms to their information sources.

Step 2: Manual Matching. Second, I manually fill in missing matches for top contrib-

utors and their employers. The goal is to ensure that most OSS contributions in my sample

are accurately matched to firms. Manually matching all contributions is impractical, so I

select reasonable activity cutoffs.

For contributor matching, I create a list of all GitHub users with at least 1,000 contribu-

tions to the web frameworks I focus on. Contributions include commits, issues, pull requests

(PRs), comments, and reviews. If a user is already conservatively matched to other online

profiles, I manually verify the accuracy of the match, which is almost always correct—my

conservative matching procedure is designed to minimize false positives for top contribu-

tors.91 If a user with more than 1,000 contributions is not conservatively matched to a

LinkedIn account, I manually match them if they have one.

For firm matching, I use the results of conservative/manual contributor matching and

conservative firm matching to create an employment history for each contributor, detailed in

Appendix G. I then create a list of firm identifiers with at least 1,000 contributions to the web

frameworks that I focus on, or with at least 10 employed contributors to these frameworks.

I manually verify the accuracy of these matches, which, again, are almost always correct

given the conservative matching process.92 If a firm identifier above either cutoff is not

conservatively matched to both a TLD and LinkedIn page, I manually match it if possible.

91Aside from bots (discussed in Appendix A) I discard a few non-real identifiers, such as “test@test.com.”
92I do find more non-real firm identifiers than contributor ones, such as “frontend developer” in the GitHub

company field or “whoisprivacy limited” in censored WHOIS records, which I discard.

72

Step 3: Predictive Matching. Finally, I predict remaining matches for smaller con-

tributors and their employers. For contributors, the goal is to match GitHub users who

contributed to the web frameworks in my primary sample to their LinkedIn profiles, pro-

vided they have LinkedIn accounts. For firms, the goal is to match the company names or

GitHub organizations listed on these contributors’ GitHub profiles to their LinkedIn com-

pany profiles, which have already been linked to other sources of firm information through

conservative and manual matching.

For contributors, I create a large dataset of GitHub user and LinkedIn profile pairs. The

GitHub users are those who contributed to the web frameworks in my primary sample. The

LinkedIn profiles are those listing employment as a software developer at a LinkedIn company

matched to a TLD with an Alexa rank of 10,000 or better during my sample period.93

This dataset contains all possible GitHub-LinkedIn matches relevant to my panel of firms

operating the world’s most visited websites. I describe below how I eliminate implausible

matches using similarity measures.

For firms, I create a large dataset of pairs linking companies listed on GitHub profiles

to LinkedIn company pages. The GitHub companies are those listed on the profiles of

contributors to the web frameworks in my primary sample, or the GitHub organizations

listed in their place. The LinkedIn company pages are those matched to a TLD with an

Alexa rank of 10,000 or better during my sample period. As with contributor pairs, this

dataset contains all possible GitHub company-LinkedIn company matches relevant to my

panel. I explain below how I filter out implausible matches based on similarity measures.

In each dataset of pairs, I use the results from conservative and manual matching to fill

in match indicators for GitHub users already matched to a single LinkedIn profile and for

companies listed on GitHub profiles already matched to a single LinkedIn company page.

These indicators—ones for matched pairs and zeros for others—serve as training data to

classify the remaining pairs. I train classifiers using features derived from my GitHub and

LinkedIn data. There are two types of features: pair features, which relate to both the

GitHub and LinkedIn profiles or companies, and standalone features, which are linked to

just one side of the pair.

For contributors, standalone features for GitHub and LinkedIn profiles include an indi-

cator for whether the username matches the lowercase listed name (substituted with the

username when the name is unavailable), their respective lengths, and text embeddings.

For firms, standalone features for companies listed on GitHub profiles and LinkedIn com-

93I classify job titles as software developers in Appendix H.

73

pany profiles include the length of the company name and its text embedding. I embed

usernames and names using FastText’s (Joulin et al., 2016) multilingual lid.176.bin model,

which generates 16 features per embedding.

For firms, the pair features include the normalized Levenshtein distance between lower-

case company names and the cosine similarity between their embeddings. I discard pairs

with a normalized Levenshtein distance above 0.7. For contributors, I include Levenshtein

distances between GitHub and LinkedIn usernames and names, cosine similarities between

embeddings, and discard pairs with both normalized Levenshtein distances above 0.4.94 Since

I have more data on contributors than firms, I also include an indicator for whether GitHub

and LinkedIn profiles list the same country and information on overlapping work histories.

If both profiles have geocodable but non-overlapping countries, I discard the pair.

For contributors, I add pair features based on overlapping work histories. My GitHub and

LinkedIn data contain work history information; I infer employment histories from GitHub

data in Appendix G, while LinkedIn histories are taken directly from my data, which is

cleaner. For each pair of GitHub and LinkedIn profiles, I list company name pairs with

overlapping start and end months, keeping up to 10 pairs with the most overlapping months.

For each, I add Levenshtein distances between lowercase company names, their lengths, and

their number of overlapping months as pair features.

I use regularized gradient boosting (XGBoost, Chen and Guestrin, 2016) to train binary

classifiers on the matched pairs and their features, using XGBoost’s default hyperparameters.

Each trained classifier predicts matches for the remaining pairs. If a GitHub user is matched

to multiple LinkedIn accounts, or a company listed on a GitHub profile is matched to multiple

LinkedIn company pages, I select the highest probability match.

F. Classifying Countries, Languages, and Markets

In this appendix, I explain how I assign contributors and firms to countries, and websites to

languages and markets. Contributor countries are used to geocode investments not linked to

firms in my primary sample. Firm countries are based on headquarter locations. I use website

languages and markets for demand estimation, and compare my preferred Similarweb-based

markets with alternatives. I rely on direct information when available and train classifiers

to impute missing values when necessary.

94I set the cutoffs as high as possible while ensuring that training does not exceed 250GB of memory.

74

Contributor Countries. Contributor matching in Appendix E often provides multi-

ple sources of information about a contributor’s self-reported location. If a contributor

is matched to a LinkedIn account with a self-reported country, I use the most recently

scraped country. Otherwise, I rely on the latest self-reported country that can be success-

fully geocoded from the contributor’s GitHub profile. The geocoding process for GitHub

user locations is described in Appendix A.

This procedure fails to identify the country for some contributors to the web frameworks

in my sample who lack LinkedIn profiles or self-reported locations. For these contributors,

I use regularized gradient boosting (XGBoost, Chen and Guestrin, 2016) to impute missing

countries, with default XGBoost hyperparameters. For each GitHub user in my full dataset, I

construct features from their latest profile information and activity, train a classifier on those

with successfully geocoded self-reported countries, and predict countries for the remaining

users.

I construct features informative about GitHub user locations. From each user’s latest

profile information, I identify the account creation timestamp, whether their lowercase user-

name matches their self-reported name, the lengths of both, and their text embeddings.

I generate these embeddings using FastText’s (Joulin et al., 2016) multilingual lid.176.bin

model, which produces 16 features per embedding.

Most of my features, however, come from users’ GitHub activity. I create separate feature

sets for each type of activity described in Appendix A: commits, pull requests (PRs), issues,

reviews, and comments. For each, I calculate the activity count, the share completed in

each hour of the day, the share done on federal holidays for various countries, the share on

repositories owned by self-reported residents of each country, and the confidence-weighted

share of text content in each of the 176 languages identified by FastText (Joulin et al., 2016),

separated into messages, titles, and text bodies. I discard very sparse holiday and owner

shares for countries with fewer than 0.1% of self-reported GitHub user locations and remove

these rare countries from my list of classes. Similarly, I discard language shares with fewer

than 0.1% nonzero values. For each message, title, and text body, I keep only the top two

languages, assigning zero confidence to others.

Firm Countries. Firm matching in Appendix E similarly results in multiple sources of

information about a firm’s headquarters location. I use countries from LinkedIn company

pages when available. Otherwise, I rely on information from Compustat, Pitchbook, or

Orbis, in that order. If the preferred source lists multiple countries, I choose the one with

75

the highest employee count.95

This process fails to identify the country for some smaller firms, typically websites ranked

above the Alexa top 10,000 cutoff used throughout this article, but with little or no firm

information matched in Appendix E. For these firms, I train an XGBoost classifier to predict

the country for websites ever ranked in Alexa’s monthly top 10,000 during my sample period,

using default XGBoost hyperparameters. For each top-level domain (TLD), I create features

from homepage information and train a classifier on those directly linked to LinkedIn, Com-

pustat, Pitchbook, or Orbis company data.96 I predict countries for the remaining TLDs,

excluding rare countries representing fewer than 0.1% of already-matched TLDs.

I create features informative about the firm operating each website. First, I create an

indicator for each TLD extension that represents more than 0.1% of TLDs in my sample,

including country-specific extensions like .us and .uk. Second, I use WHOIS domain name

registrations data described in Appendix E to link TLDs with contact countries when avail-

able. For each TLD, I use the most recent contact country, prioritizing the registrant, then

the administrative contact, and finally the technical contact. I create a separate indicator

for each country representing more than 0.1% of observations in the WHOIS data.

Additionally, I include rich embeddings of each website’s text content. For each Com-

mon Crawl archive of the website’s homepage (described in Appendix B), I embed the pre-

extension TLD text, title, description, keywords, and page text separately. To manage the

page text volume, I only use the text from the first 100 visible page elements. Given the

large amount of information in the page text, I embed each using the multilingual XLM-R

model (Conneau et al., 2019), which generates 768 features per embedding.97 I average each

embedding across all homepage crawls in my data, limiting this to crawls when the website

was in Alexa’s top 10,000, if available.

Website Languages. Demand estimation in Section 5.1 requires classifying the natural

language of each website’s text content. I start with each Common Crawl archive of the

website’s homepage, concatenating the pre-extension TLD text, title, description, keywords,

and page text, while limiting it to the first 100 visible page elements. I use FastText’s

(Joulin et al., 2016) lid.176.bin model to identify the top two most likely languages of this

95For example, a firm might be matched to multiple LinkedIn company pages or Compustat GVKEYs.
For LinkedIn, I use the most recent employee count. For Compustat, Pitchbook, and Orbis, I use the average
employee count from 2014 to 2022.

96I treat each source-company as a separate observation for prediction, filtering for TLDs in Alexa’s
monthly top 10,000 during my sample period, and discarding those without a valid country.

97I do not explicitly include language features, as these should be captured within the XLM-R embeddings.

76

concatenated text, along with their percent confidences, and set the confidence for all other

languages to zero. Across archives, I assign the confidence-weighted most likely language.

Website Markets. Demand estimation also requires assigning a market to each website.

There are several ways to classify websites, and I evaluate four options. First, I use the

80 categories provided by Similarweb, a web analytics company. Second, I consider us-

ing scraped website categories from Curlie (formerly DMOZ), a grassroots, Wikipedia-like

project for categorizing the internet. Third, I explore using NAICS and LinkedIn industries

from matched firm information.

Overall, I prefer Similarweb categories, which I use throughout the article for market def-

inition. These categories are designed for Similarweb clients, often operators of websites like

those in my sample. From evaluating random samples, I find that market definitions based

on firm industries are disconnected from the likelihood of substitution between websites,

which is what markets aim to capture for the purposes of demand estimation. Industry

classifications are also too broad, as websites make up only a small part of the economy.

Curlie categories, on the other hand, tend to be too specific.98

Another advantage of Similarweb is that its categories are rarely missing. Coverage for

other market definitions is much lower and would require more imputation. For the few

websites that Similarweb does not classify, I use the TLD extension and text embedding fea-

tures mentioned earlier to predict website categories. Using these features and Similarweb’s

category classifications, I train an XGBoost classifier to predict the Similarweb category for

websites ever ranked in Alexa’s top 10,000 during my sample period, with default XGBoost

hyperparameters. I use this classifier to impute the few missing markets in my sample.

G. Measuring OSS Investment

In this appendix, I explain how I measure the hours of investment into web OSS from the

firms in my sample. First, I construct employment histories using the contributor and firm

matches from Appendix E. These employment histories allow me to attribute OSS activity to

firms in my sample, but there are many types of OSS activity, described in Appendix A. To

standardize this activity in terms of hours, I develop a simple data-driven approach tailored

to the software in my dataset.

98While higher levels of Curlie category aggregation are possible, they seem somewhat arbitrary.

77

Employment Histories. I first construct employment histories for contributors using

their matched online profiles and various sources of firm information. For each contributor-

month, I prioritize LinkedIn employment data, as my scraped LinkedIn data provides rel-

atively clean employment histories. If a contributor is not matched to a LinkedIn profile

or their profile lacks employment data for a specific month, I fall back on information from

their GitHub or matched Gitee profiles, in that order.

When needed, I infer employment histories from historical GitHub user page archives,

described in Appendix A. For the lowercase company name listed on a GitHub profile’s first

archive, I set its start month to the profile’s creation month. For the name listed on the

final archive, I set its end month to the end of my sample. For others, I set the start month

to when the company name first appears and set the previous company’s end month to this

same month. I use the matching results from Appendix E to link these company names

to other firm information. In rare cases where a contributor has no LinkedIn or GitHub

employment data but has a Gitee account, I assume they are employed at the company

listed in my one archive of their Gitee page, if available, throughout the sample.

This process results in a list of firms where each contributor is employed during each

month. Typically, only one firm is listed: the contributor’s employer. If there are no firms

listed, I include the contributor’s OSS activity in aggregate and country-level investment

measures (using the contributor’s country) but do not attribute their activity to any firms

in my sample. If multiple firms are listed, I attribute equal shares of their OSS activity to

each firm.

Hours Estimation. In Appendix A, I describe the five main types of OSS collaboration

on the web frameworks in my sample: commits, issues, pull requests (PRs), reviews, and

comments. I develop a simple procedure to convert all of this activity into hours, which I

sum into the OSS investment measures used throughout the article. I am optimistic that

this approach can be applied in other research to derive context-specific measures of OSS

investment, reflecting the many ways OSS collaboration occurs.

The key requirement for my approach is a measure of the average hours per month spent

contributing by those in my sample. I base this on a recent survey (Nagle et al., 2020) of top

OSS contributors. Among 511 respondents who currently contribute to OSS, the average

weekly contributions is 14.8 hours. When I restrict this to the 85 respondents who work

on web OSS,99 their average weekly contribution is slightly lower at 13.1 hours. Since the

99These are the contributors whose OSS work is, according to them, best categorized as on web frameworks,
HTTP modules, CSS, or content management systems

78

contributors to web OSS in my sample closely match this group, I use the lower estimate.

This average, scaled to a monthly frequency, forms the left-hand side of a “hedonic”

regression, where observations are contributor-months during my primary sample period of

2014 to 2022. I discard contributor-months with no commits to the web OSS repositories

in Appendix Tables D1 and D2 to focus on estimates relevant to the software I study, and

because surveyed contributors were told that “active” meant committing.

The goal of the “hedonic” regression is to decompose the total hours spent on OSS

contributions into hours from each category of OSS activity. To do this, I include a separate

regressor for each activity type. Since the left-hand side reflects contributions to all OSS,

not just the primary web OSS in my sample, it’s important to count each contributor’s total

OSS contributions for a given month on the right-hand side. My comprehensive GitHub (and

Gitee, for applicable contributors) activity data allows me to construct these total counts

for each contributor and month.

This approach also makes it possible to account for differences between contributors. For

instance, one contributor might take more time than another to make a typical commit.

Various contributor characteristics can be included on the right-hand side of the regression.

In practice, I find that whether a contributor reviews code on an OSS project is a particularly

predictive factor—these reviewers generally require fewer hours to complete similar activities.

I include separate regressors for their activity.

Specifically, let E[Lit] denote the survey-based average hours contributing to OSS, where

t denotes months and i represents contributors. Let XL
ict denote the number of contributions

made by i in month t for activity a ∈ A. If i is a reviewer, non-reviewer activity categories

are zero, and vice versa. I estimate the following non-standard regression with a constant

left-hand side and without an intercept on the right-hand side:

E[Lit] =
∑
a∈A

λaX
L
ait + εLit. (G1)

The residual εLit captures how contributors’ actual hours spent contributing in a given

month differ from the survey-based average. Each coefficient λa measures the hours required

for activity a. Since the counts XL
ait can include outliers, I winsorize nonzero counts at the

99% level within each month.

I report estimates in Appendix Table G1. All point estimates are positive, though they

can be negative in bootstrap samples, where I resample contributors. Since downstream

estimation requires nonnegative investment, I use nonnegative least squares for bootstrap

79

samples. I report 95% confidence intervals in brackets.

I find that for the web OSS in my sample, a typical PR takes between one and two

hours. Conditional on the number of PRs, commits and attached reviews take less time.

Importantly, this does not mean that analyzing commits alone would significantly understate

the overall OSS investment. If this regression were run using only commits, their coefficient

would be larger, capturing the activity correlated with each commit.

When constructing my OSS investment measures, I convert activity counts into hours

using the estimated “hedonic” coefficients λ̂. Since my focus isn’t on whether, for example,

commits generate more value than issues, or whether reviewers contribute more than others,

I simply sum the hours across different activity categories. However, future research focused

on the specifics of OSS collaboration could keep these estimates separate.

Appendix Table G1: Hours Estimates

Mean Hours Contributed

Reviewers Others

Commits 0.10 0.19
[0.08, 0.11] [0.17, 0.21]

Issues 0.50 0.62
[0.34, 0.68] [0.39, 0.85]

Pull requests 0.77 1.92
[0.66, 0.87] [1.76, 2.05]

Comments 0.07 0.09
[0.05, 0.10] [0.04, 0.13]

Reviews 0.03
[0.00, 0.07]

R2 0.34

Contributor-months 94,867
↪→ Contributors 36,104
↪→ Months 108

This table reports results from the nonnegative
least squares regression of the survey measure
for mean hours per month spent contributing on
the number of counts for each activity category.
Nonzero counts are winsorized from above at the
99% level within each month. In brackets, 95% con-
fidence intervals are from 80 bootstrap samples, for
which I resample contributors with replacement.

80

My estimates λ̂ reflect the typical hours spent on web OSS contributions in my sample.

I do not expect λ to be the same in other contexts. For instance, contributors to other types

of OSS might write larger PRs or commits that take more time. Adapting my approach

to other settings would require re-estimating the regression with left- and right-hand sides

tailored to those contexts.

H. Measuring In-House Investment

In this appendix, I explain how I measure hours of in-house web development investment

for the firms in my sample. I begin with matches from Appendix E between firms and their

LinkedIn pages. Using my scraped LinkedIn data, I estimate how many web developers each

firm employs and scale this by survey-based estimates of their average workweeks. Finally,

I subtract the small amount of OSS investment attributed to firms from Appendix G.

My LinkedIn data also allows me to estimate the total number of workers employed by

each firm, which I use as a proxy for production function estimation in Appendix J. By

breaking this down into web developers, other software developers, and non-developers, I

estimate the population of web developers and other software developers by country and

globally in Section 2.3.

Identifying Developers. My scraped LinkedIn data includes only raw job titles in work

experiences. To identify different types of web developers, I use data from Lightcast (formerly

Burning Glass), which maps many LinkedIn job titles on US profiles to SOC codes.

Across different SOC versions, web developer codes are 5-1134, 15-1257, 15-1254, and 15-

1255. More broadly, software developer codes are 15-113 and 15-125. Using these, I create

three classes of work experiences: web developers, other developers, and non-developers. For

lowercase job titles that Lightcast matches to only one class,100 I assign that class. For the

rest, I use Lightcast matches as training data, where each observation is a job title-class pair.

I use FastText’s (Joulin et al., 2016) multilingual lid.176.bin model to create 16 features

for each lowercase job title. Then, I train a classifier using regularized gradient boosting

(XGBoost, Chen and Guestrin, 2016), with these features as inputs and my three classes

as the output. I use default XGBoost hyperparameters. Once trained, I use the classifier

to predict the classes for job titles that cannot be uniquely matched to a class using the

Lightcast data.

100Lightcast uses a two-step procedure to match job titles to SOC codes: pattern matching followed by
a machine learning model that incorporates job title and profile experience. Multiple SOC codes may be
matched if there is no direct pattern match, such as when the job title is vague.

81

Adjusting for LinkedIn Penetration. My LinkedIn data is a consolidated collection of

618 million individual profiles and 62 million company profiles, gathered through multiple

scrapes of public information from 2016 through 2022. Individual profiles include work

experiences, which are typically linked to company profiles. For each LinkedIn company and

month, I count the number of LinkedIn users with a work experience at the company that

overlaps with the month and has a web developer job title. However, this only captures the

number of web developer employees who list their employment on LinkedIn.

Not all web developers use LinkedIn, and LinkedIn penetration rates vary across occu-

pations and countries. If unaddressed, both factors could bias my estimates of in-house

investment. To estimate LinkedIn penetration rates, I make an assumption. I assume the

penetration rate for an occupation category relative to the unconditional penetration rate is

the same across countries:

P(LinkedIn | country, occupation)
P(LinkedIn | country)

=
P(LinkedIn | other country, occupation)

P(LinkedIn | other country)
. (H1)

I estimate the denominator P(LinkedIn | country) by dividing the yearly number of users

in my LinkedIn data for each country by the country’s workforce data from the World Bank.

For P(LinkedIn | US, occupation), I divide the yearly number of US web developers and

other developers in my LinkedIn data by the US Bureau of Labor Statistics (BLS) estimate

of their total numbers, using the same SOC codes as before.

With the US estimates for the right-hand side and the denominator for each country, I

compute the LinkedIn penetration rate P(LinkedIn | country, occupation) for each country

and occupation category. When World Bank data are missing for a country in a given year, I

linearly interpolate its penetration rate. If World Bank data are always missing for a country,

I use employee-weighted global penetration rates.

Developer penetration rates generally range from 5% to 50%. For example, the web

developer penetration rate for China—where LinkedIn is less commonly used—is around

5%, while it is about 2% for other developers. In some cases, penetration rates exceed 100%.

In the US, for instance, web developer penetration rates range from 100% to 200%. This

suggests my classification of web developers based on LinkedIn job titles is broader than the

BLS classification; adjusting for penetration above 100% helps align my estimates with the

BLS definition of web developers.

Converting to In-House Hours. For each firm and year in my sample, I compute the

number of web developers employed on LinkedIn and divide this by the LinkedIn penetration

82

rate for the firm’s country and year. This provides an estimate of the firm’s investment in

web development, expressed in terms of developers. To convert this into hours, I scale these

counts using country-specific average workweeks from survey data.

Specifically, I calculate country-level averages for web developer workweeks based on two

recent large-scale surveys (Stack Overflow, 2019, 2020).101 For countries with fewer than

100 responses, I use the global average. Averages range from 37 to 45 hours per week, with

40 hours being the most common. I use these averages—scaled by 52 weeks per year—to

convert web developer counts into total yearly investment in web development.

Finally, I adjust for hours of OSS investment from Appendix G. This adjustment is

minor because web OSS investment is rare compared to total web development investment.

To adjust carefully, however, I subtract my estimate of yearly hours invested into the web

OSS in my sample, scaled by an average of 48% of hours spent on OSS during work hours,

which I take from the same sample of survey respondents that I use to compute the average

weekly hours spent contributing to OSS in Appendix G.

I. Demand Estimation Details

In this appendix, I provide details about website demand estimation from Section 5.1. Es-

timation follows standard micro BLP (Berry, Levinsohn, and Pakes, 1995, 2004), so I use

PyBLP, my own OSS for demand estimation (Conlon and Gortmaker, 2020, 2024). I describe

my data, how I parameterize the demand system, define and adjust for market size mismea-

surement, and estimate the demand system. Finally, I explain how I express consumer

preferences in dollars using a back-of-the-envelope calculation.

Demand Data. The two main inputs for demand estimation are my traffic estimates from

Appendix C and additional data from Similarweb on country-specific traffic shares. While

the traffic estimates cover the full sample, my Similarweb data on country-specific shares is

limited to 2021. For that year, it includes most websites in my sample. I use Similarweb

shares to scale my traffic estimates, generating country-specific traffic estimates for 2021.

Demand Parameterization. In each year t = 2014 to 2022, I estimate demand for

websites j ∈ Jt ranked 10,000 or better according to my monthly Alexa traffic data from

101These surveys include 20,944 responses on weekly hours worked by employed developers with any work
on PHP, CSS/HTML, or “web frameworks” in the US, 397 in China, and 65,397 from other countries. I clip
a few outliers above 80 hours per week and average the results within each country.

83

Appendix C. I segment websites into markets m ∈ M using the 80 Similarweb categories

discussed in Appendix F. Let Jmt ⊂ Jt denote the websites in market m.

Consumers are differentiated by their types i ∈ It, which are country-language pairs. Let

c(i) and l(i) denote the country and language of type i, and let c(j) = c(f(j)) and l(j) denote

the country and language of website j. Using this notation, the “home bias” indicators in

my parameterization of systematic utility in (13) are

XV ′
ijt =

[
1c(i)=c(j)

[
1, 1c(i)=US, 1c(i)=China

]
, 1l(i)=l(j)

[
1, 1l(i)=English, 1l(i)=Chinese

]]
. (I1)

Potential Demand. Estimation requires taking a stance on the potential traffic Qimt in

(14) from consumers of type i to websites in market m. Let Qt =
∑

i∈It
∑

m∈MQimt denote

the overall potential traffic in year t. I simply assume

Qt = Ut × 20, (I2)

in which Ut is the number of internet users from the International Telecommunication Union,

and 20 websites per day is roughly the 99th percentile of daily in-sample visits in 2020 Com-

score browsing data for the US. This scaling reflects an untestable assumption common in

most market size definitions; below, I discuss how I ensure that my estimates and simulations

are not significantly affected by this assumption. I decompose global potential traffic as

Qimt = Qt × Ac(i) ×
Uc(i)t

Ut

× Sc(i)l(i) ×
∑

j∈Jmt
Qjt∑

j∈Jt
Qjt

, (I3)

where Ac is a Similarweb-based adjustment to the global 20 websites per day for country

c, Uct/Ut is the share of internet users in country c, Scl is the Ethnologue (Lewis et al.,

2016) population share of country c with primary language l, and the rightmost term is the

within-sample traffic share of market m.

Each term introduces additional assumptions. By distributing potential traffic to different

markets based on within-sample traffic shares, I assume that traffic to websites outside

Alexa’s top 10,000—captured by each market’s outside alternative—follows a similar pattern

across markets. By distributing a country’s internet users according to primary language

shares based on overall populations, I assume these language shares are the same for the

country’s internet users.

The Similarweb-based adjustment Ac accounts for differences in internet user activity

84

across countries. Intuitively, it functions similarly to including country-specific fixed effects

in my parameterization of systematic utility.102 For the 12 months in 2021 for which I have

country-specific traffic from Similarweb, I compute the amount of in-sample traffic from each

country and scale this by the global share of traffic covered by Similarweb to estimate each

country-month’s potential traffic. I divide this by the number of internet users and the days

in each month, then average across 2021 to get a country-specific estimate of websites visited

per day. The adjustment Ac is this value divided by the baseline of 20 websites per day.

Market Size Mismeasurement. Like most measures of potential demand, mine is im-

perfect and relies on several assumptions that are either difficult to verify or untestable.

Fortunately, my policy simulations in Section 7 do not focus on substitution between in-

side alternatives and the outside option, which is particularly sensitive to such assumptions

(Zhang, 2024). To ensure my estimates and simulations are not overly affected by how I

define market sizes, I make two choices, discussed in Sections 5.1 and 7.4, which I describe

in more detail here.

First, when estimating my quality production function, a concern is that misspecified

market sizes could bias my estimates. In a simple logit model with no random coefficients,

βV = 0, biased market sizes appear as market-year fixed effects ωΞ
mt, so I always include

these when estimating the production function. These fixed effects also help reduce bias in

models with random coefficients (Zhang, 2024).

Even if my estimators of βV , βP , and βS were unbiased, a remaining concern is that

misspecified market sizes could bias my profit maximization simulations in Section 7.4.103 To

prevent resulting unrealistic outside substitution from driving my results, I fix this margin by

adjusting the systematic utility each consumer receives from the outside option. Specifically,

in my profit maximization simulations, I replace the normalization of Vi0t(ξt) = 0 during

estimation with the Vi0t(ξt) required to fix Qi0t(ξt) to its estimated value. This assumption

seems reasonable since the outside option includes all out-of-sample websites in a market,

which are likely produced similarly to those in my sample and would experience similar

quality changes.

102I opt for adjusting each country’s potential demand to avoid introducing many new nonlinear parameters.
103Large potential demand implies large outside shares and, consequently, a large logit quality for the

outside option, potentially leading to significant substitution from inside alternatives to the outside option
in counterfactual simulations.

85

Micro Moments. I estimate the coefficients βV on the “home bias” indicators XV
ijt in (I1)

by matching one observed statistic per indicator with its model-predicted counterpart. These

statistics use my Similarweb data from 2021, so I only compute model-predicted counterparts

in 2021. Using the notation-abusing shorthand from Conlon and Gortmaker (2024), I match

“P(1c(i)=c(j) | j ̸= 0), P(1c(j)=c(j) | c(j) = US), P(1c(j)=c(j) | c(j) = China), ”

“P(1l(c(i))=l(j) | j ̸= 0), P(1l(c(j))=l(j) | l(j) = English), P(1l(c(j))=l(j) | l(j) = Chinese), ”

where l(c) denotes the language of country c with the highest population share. Moments

based on l(i) would be more informative about coefficients in βV on language indicators,

but my Similarweb data only contains country-specific traffic shares and does not report

separate shares by language of internet users.

Since the discrete choices in my model of web traffic demand are units of traffic, these

micro moments are traffic shares. I report their observed values in Table 3. As the model

is just-identified, with exactly one micro moment per parameter, my estimation procedure

matches each statistic exactly, up to numerical error.

Estimation Procedure. My minimum distance estimator for βV is simpler than the full

estimator in Conlon and Gortmaker (2024) because I only use micro moments. Since the

model is just identified, I can use the identity weighting matrix without any loss of efficiency:

β̂V = argmin
βV

gV (βV)
′gV (βV), (I4)

in which gV (βV) consists of differences between observed traffic shares and their model

counterparts.

To compute β̂V , I follow the recommendations in Conlon and Gortmaker (2020, 2024). I

optimize βV using SciPy’s trust-region algorithm and consistently achieve an objective value

numerically indistinguishable from zero. For each guess of βV , I first use the SQUAREM

algorithm from Varadhan and Roland (2008) to accelerate the Berry, Levinsohn, and Pakes

(1995) contraction mapping used to recover website qualities ξ̂jt(βV). I terminate with

a strict absolute tolerance of 10−14. Second, I compute the model counterpart for each

observed micro statistic. For example,

“P(1c(i)=c(j) | j ̸= 0)” =

∑
i∈It

∑
m∈M

∑
j∈Jmt

Qijt(βV) · 1c(i)=c(j)∑
i∈It

∑
m∈M

∑
j∈Jmt

Qijt(βV)
, (I5)

86

in which t = 2021. I use Bayes’ Rule to compute the model counterparts conditioned on the

US, China, English, and Chinese.

Since my micro moments are only for 2021, computing β̂V requires calculating website

qualities ξ̂jt(βV) only for 2021. However, after estimation, I compute the estimated website

qualities ξ̂jt for all years in my sample, which are inputs for quality production function

estimation. I also calculate the estimated consumer type-level traffic Q̂ijt, which are inputs

for my simulation of losing access to Facebook.

Facebook Simulation. To express β̂V in dollar terms, I use a back-of-the-envelope calcu-

lation based on simulating the experiment conducted in 2022 by Brynjolfsson et al. (2023),

which measured Facebook users’ willingness to accept (WTA) compensation for losing access

to the website for a month. I use their pooled WTA estimate of $31, scaled by 30 days per

month.

Specifically, let k be Facebook, let m = m(k) be its market, let t be 2022, let I ′
t ⊂ It be

consumers in the 13 surveyed countries, and denote the inclusive value of websites J by

V̂it(J) = log
∑

j∈J∪{0}

exp
(
β̂′
VX

V
ijt + ξ̂jt

)
. (I6)

Using my estimated model of demand, I compute a utility-to-dollars conversion factor

τ̂ =
$31

30
÷

∑
i∈I′

t
Q̂ikt ·

(
V̂it(Jmt)− V̂it(Jmt \ {k})

)∑
i∈I′

t
Q̂ikt

, (I7)

in which weighting by Q̂ikt selects Facebook users.

In Appendix Table I1, I report the unscaled estimates of β̂V underlying Table 3. For

the preferred specification with both types of preference heterogeneity, I also report τ̂ × β̂V ,

expressed in dollars per daily visit. I report 95% confidence intervals in brackets. The

only source of uncertainty in my demand estimates comes from traffic estimation in Ap-

pendix C.104

104Since my traffic data and Similarweb country shares are based on an unknown—but presumably large—
number of underlying observations, I do not account for sampling error in my micro moments.

87

Appendix Table I1: Demand Parameter Estimates

Preference Heterogeneity

Country Language Both Dollars

Same country All consumers +2.1 +1.5 +9.8
[+1.9, +2.3] [+1.4, +1.7] [+8.8, +10.8]

× US-based -1.4 -1.1 -7.4
[-1.6, -1.2] [-1.3, -1.0] [-8.2, -6.6]

× China-based +3.7 +3.6 +23.3
[+3.2, +4.4] [+3.1, +4.3] [+20.3, +27.5]

Same main language All consumers +4.5 +4.3 +27.9
[+4.4, +4.6] [+4.3, +4.4] [+27.8, +28.1]

× English-speaking -4.0 -3.8 -24.7
[-4.1, -3.9] [-3.9, -3.8] [-25.1, -24.6]

× Chinese-speaking +1.2 -2.2 -14.3
[+0.9, +1.6] [-2.3, -2.1] [-14.9, -13.5]

This table reports unscaled parameter estimates underlying Table 3. The estimates β̂V are coefficients
on indicators in XV

ijt for consumer type i and website j being from the same country and using the same
main language, with separate interactions for the US, China, English, and Chinese. The rightmost column
scales β̂V by τ̂ , converting the values to dollars per daily visit. In brackets, 95% confidence intervals are
from 80 bootstrap samples that account for sampling error from traffic estimation in Appendix C.

J. Production Function Estimation Details

In this appendix, I provide details about estimating the production function for website

quality in Section 5.2. Since the quality production function relies on parameters I esti-

mate using revealed preferences from cost minimization in Appendix K, I perform these two

steps jointly. However, conditional on depreciation δP and weights α, production function

estimation follows a standard two-step procedure.

Specifically, I follow the literature that uses proxy variables and timing assumptions

(Olley and Pakes, 1996; Levinsohn and Petrin, 2003; Ackerberg, Caves, and Frazer, 2015).

I also compare my proxy variable estimates with those from alternative approaches (e.g.,

Blundell and Bond, 1998, 2000), which relax some assumptions but impose others. My

discussion in this appendix mirrors some of the discussion in Ackerberg (2023).

88

Proxy Variable Approach. My production function in (12) has two primary regressors.

Let βΞ = [βP , βS]
′ be the coefficients on the log of private capital and weighted OSS use:

XΞ
fjt =

[
logKft,

∑
p∈P

αp 1sjpt∈OSt

]′
. (J1)

Given my assumption that ωΞ
jt in (12) is a flexible function of these two regressors and

the proxy variable, total employees Eft, the first step in the standard two-step procedure is

to run the following fixed effects regression:

ξjt = β′
ΞX

Ξ
fjt + ωΞ

m(j)t + ωΞ
jt + εΞjt = ΦΞ

fjt(X
Ξ
fjt, Eft) + ωΞ

m(j)t + εΞjt, (J2)

where I replace quality with ξ̂jt from demand estimation in Appendix I, and I replace ΦΞ
fjt

with a quadratic polynomial of the regressors in XΞ
fjt and logEft.

This first step provides an estimator Φ̂Ξ
fjt that I use in the second step. Given a guess

of βΞ, I compute ω̂Ξ
jt(βΞ) = Φ̂Ξ

fjt − β′
ΞX

Ξ
fjt. Given my assumption in (15) that ωΞ

jt follows a

first-order Markov process, I then run the following regression:

ωΞ
jt = g(ωΞ

jt−1) + νΞ
jt, (J3)

where I replace each ωΞ
jt with ω̂Ξ

jt(βΞ) and I replace g with a quadratic polynomial. This

provides an estimator ν̂Ξ
jt(βΞ), which I use to form sample moments:

β̂Ξ = argmin
βΞ

gΞ(βΞ)
′ WΞ gΞ(βΞ), gΞ(βΞ) = Ê

[
νΞ
jt(βΞ) ·ZΞ

fjt−1

]
, (J4)

where Ê denotes the average over website-years with at least two lags, starting in 2016.

Instruments ZΞ
fjt−1 = [XΞ′

fjt−1,X
Ξ′
fjt−2]

′ are two lags of the regressors. As discussed in

Footnote 47, I include two lags to help with the under-identification issue documented by

Ackerberg, Frazer, il Kim, Luo, and Su (2023). I use two-step GMM with initial weighting

matrix WΞ = Ĉ(ZΞ
fjt)

−1.

89

Appendix Table J1: Quality Parameter Estimates

Unscaled Dollars

β̂P Log of private capital +0.25 +1.62
[+0.22, +0.29] [+1.40, +1.85]

β̂S OSS indicator -0.20 -1.30
[-0.49, +0.12] [-3.12, +0.77]

This table reports the unscaled β̂P and β̂S estimates under-
lying Table 4, and in the right column, scales these estimates
by the conversion factor from Appendix I, expressing the pa-
rameters in dollars per daily visit. In brackets, 95% confidence
intervals are from 80 bootstrap samples that account for sam-
pling error from traffic estimation in Appendix C, OSS invest-
ment estimation in Appendix G, demand estimation in Ta-
ble 3, and supply estimation in Table 4.

Estimation Results. I report β̂Ξ = [β̂P , β̂S]
′ in the unscaled column of Appendix Table J1.

In the second column, I scale by the conversion factor τ̂ from Appendix I, which puts β̂P

and β̂S in dollars per daily visit. I report 95% confidence intervals in brackets. Uncertainty

comes from estimation of traffic in Appendix C, OSS investment in Appendix G, demand

in Appendix I, and δP and α in Appendix K. For each bootstrap sample, I re-sample firms

before re-estimating the quality production function.

Alternative Approaches. In Appendix Table J2, I compare estimates of β̂P and β̂S from

the above proxy variable approach with other methods. The middle column is the same

as the unscaled column from Appendix Table J1. To its left, I report results from an OLS

regression of ξ̂jt on XΞ
fjt and market-year fixed effects. I then add website fixed effects (FE).

When simultaneity bias is not addressed, β̂P is biased downward. Adding website fixed

effects helps, but does not fully account for the endogeneity of residual unobserved quality

after removing fixed effects.

90

Appendix Table J2: Alternative Approaches to Production Function Estimation

OLS FE Proxy DP BB

β̂P +0.10 +0.17 +0.25 +0.31 +0.63
[+0.04, +0.15] [+0.08, +0.24] [+0.22, +0.29] [+0.14, +0.62] [+0.17, +1.23]

β̂S +0.13 -0.15 -0.20 -0.43 -4.42
[-0.12, +0.41] [-0.31, -0.02] [-0.49, +0.12] [-0.79, -0.08] [-22.24, +39.88]

ρ̂Ξ +0.97 +0.77
[+0.96, +0.98] [+0.71, +0.87]

Firm-years 10,555 10,555 10,555 10,555 10,555
↪→ Firms 2,481 2,481 2,481 2,481 2,481
↪→ Years 7 7 7 7 7

This table reports estimates from different approaches to production function estimation, all ac-
counting for market-year fixed effects. From left to right, the ordinary least squares (OLS) ap-
proach runs a simple regression, the fixed effect (FE) approach adds a website fixed effect, the
proxy variable approach (Olley and Pakes, 1996; Levinsohn and Petrin, 2003; Ackerberg et al.,
2015) is the baseline specification used for Table 4 and Appendix Table J1, the “dynamic panel”
(DP) approach replaces the proxy variable with a parametric assumption about unobserved qual-
ity transitions, and the Blundell and Bond (1998, 2000) approach differences out a website fixed
effect. All approaches use the same sample of website-years with two valid lags. In brackets,
95% confidence intervals are from 80 bootstrap samples that account for sampling error from
traffic estimation in Appendix C, OSS investment estimation in Appendix G, demand estima-
tion in Table 3, and supply estimation in Table 4.

To the right of the proxy column, I report results using approaches from the dynamic

panel literature. I discuss the results before describing each estimation procedure. I begin

with a simple “dynamic panel” (DP) approach that drops the proxy variable assumption but

imposes a stronger assumption that ωΞ
jt follows an AR(1). The results for β̂P are similar,

and although β̂S is more negative, it still has a wide confidence interval. The estimated

autocorrelation ρ̂Ξ of ωΞ
jt is very high, indicating that unobserved website quality is highly

persistent.

Finally, I compare with the approach of Blundell and Bond (1998, 2000), which supple-

ments the DP approach with “double differencing” to allow for website fixed effects. This

method is more demanding on my data, so I follow convention and impose additional sta-

tionarity restrictions on the firms’ operating environments.105 Although β̂P and β̂S are much

noisier, the general conclusion remains the same: β̂P is fairly consistent across specifications

that account for simultaneity bias, while β̂S remains noisier.

105In my setting, Arellano and Bover’s (1995) stationarity assumptions require that inputs for persistently
high-quality websites, on average, after accounting for market-year fixed effects, change neither faster nor
slower than those for lower-quality websites (Ackerberg, 2023).

91

“Dynamic Panel” Approach. For the DP column, I assume ωΞ
jt follows an AR(1) with

innovations that satisfy the same moment conditions as in (15):

ωΞ
jt = ρΞ ω

Ξ
jt−1 + νΞ

jt. (J5)

Let ∆ρΞ denote the quasi-first difference operator: ∆ρΞX
Ξ
fjt = XΞ

fjt − ρΞX
Ξ
fjt−1. Differ-

encing the production function in (12) gives

∆ρΞξjt = β′
Ξ∆ρΞX

Ξ
fjt +∆ρΞω

Ξ
m(j)t + νΞ

jt +∆ρΞε
Ξ
jt. (J6)

For estimation, I concentrate out βΞ and market-year fixed effects, optimizing a GMM

objective over only ρΞ:

ρ̂Ξ2 = argmin
ρΞ

gΞ2(ρΞ)
′ WΞ2 gΞ2(ρΞ), gΞ2(ρΞ) = Ê

[
ν̂Ξ2
jt (ρΞ) ·ZΞ2

fjt

]
, (J7)

I use two-step GMM with initial weighting matrix WΞ2 = Ĉ(ZΞ2
fjt)

−1. Instruments target

βΞ, ρΞ, and each market-year fixed effect ωΞ
mt, respectively:

ZΞ2
fjt =

[
XΞ

fjt−1,X
Ξ
fjt−2, ξ̂jt−1, ξ̂jt−2,

[
1m(j)=m,t=u

]
m∈M,u=2016,...,2022

]′
. (J8)

For each guess of ρΞ, I estimate the regression in (J6) with linear IV-GMM, using the

same instruments and weighting matrix in (J7).106 This regression delivers β̂Ξ2(ρΞ), which,

given a ρΞ, minimizes the GMM objective in (J7), along with a residual ν̂Ξ2
jt (ρΞ) used to

compute the objective.

“System GMM” Approach. For the Blundell and Bond (1998, 2000) column, I add a

website fixed effect ωΞ
j to my quality parameterization in (12). I maintain the same AR(1)

assumption for ωΞ
jt, but impose Arellano and Bover’s (1995) stationarity assumptions:

E
[
ωΞ
j

∣∣∆ZΞ2
fjt

]
= 0, (J9)

106Computationally, instead of including market-year indicators, I de-mean both sides of the regression and
the instruments within market-year.

92

where ∆ denotes the non-quasi difference operator: ∆ZΞ2
fjt = ZΞ2

fjt−ZΞ2
fjt−1. Differencing the

production function in (12) gives the following system:[
∆∆ρΞξjt

∆ρΞξjt

]
=

[
β′
Ξ∆∆ρΞX

Ξ
fjt

β′
Ξ∆ρΞX

Ξ
fjt

]
+

[
∆∆ρΞω

Ξ
m(j)t

∆ρΞω
Ξ
m(j)t

]
+

[
∆ηΞjt

ηΞjt

]
, (J10)

where ηΞjt = ∆ρΞω
Ξ
j + νΞ

jt + ∆ρΞε
Ξ
jt is a composite error. The “system GMM” approach is

similar to the case without website fixed effects:

ρ̂Ξ3 = argmin
ρΞ

gΞ3(ρΞ)
′ WΞ3 gΞ3(ρΞ), gΞ3(ρΞ) = Ê

[
∆η̂Ξjt(ρΞ) ·ZΞ3

fjt

η̂Ξjt(ρΞ) ·∆ZΞ3
fjt

]
. (J11)

I use two-step GMM with initial weighting matrix WΞ3 = diag(Ĉ(ZΞ3
fjt), Ĉ(∆ZΞ3

fjt))
−1.

Second lags appear in differences of the instruments, which are

ZΞ3
fjt =

[
XΞ

fjt−1, ξ̂jt−1,
[
1m(j)=m,t=u

]
m∈M,u=2016,...,2022

]′
. (J12)

For each guess of ρΞ, I estimate the stacked regression in (J10) with linear IV-GMM,

using the same instruments and weighting matrix.

K. Supply Estimation Details

In this appendix, I provide details on estimating the supply side of the model from Sec-

tions 5.3 to 5.5. I use the method of simulated moments (McFadden, 1989; Pakes and

Pollard, 1989) and a full solution approach, simulating all firm-years’ choices for each guess

of the model’s parameters. Computational details on solving firms’ cost minimization and

profit maximization problems are in Appendix L.

Here, I focus on my two-stage estimation procedure. In the first stage, I simulate firms’

cost-minimizing choices and match moments from the observed data that target the model’s

parameters. This stage allows me to estimate all but two parameters, with moments perfectly

matched during cost minimization. In the second stage, I estimate net marginal revenue

from quality optimality conditions, simulate firms’ profit-maximizing choices, and use the

previously perfectly-matched moments to target the remaining parameters.

Targeted Moments. In Appendix Table K1, I report the moments targeted in both

stages. Each moment is the difference between a statistic computed from the observed

93

data and its simulated counterpart. Observed statistics are averages over firm-years. The

first year used to compute these statistics is 2015—one year after the start of the primary

sample—because some statistics condition on lagged choices.

To ensure that outliers in my data do not drive the results, I log-transform the statistics

before averaging across firms and years. After adding one, nearly all statistics are nonnega-

tive, except those involving the logs of estimated hours of OSS investment. For these, I scale

by ℓ, the smallest increment of OSS investment estimated in Appendix G, which I also use

to bound quantities in Appendix L.

I report bootstrapped standard errors for the observed statistics in parentheses on the

right. The sources of uncertainty include traffic estimation from Appendix C and OSS

investment estimation from Appendix G. For each bootstrap sample, I re-sample firms before

re-computing bootstrapped statistics.

Appendix Table K1: Targeted Moments for Supply-Side Estimation

Observed Simulated

Ê[· · · | f ∈ Ft, t = 2015, . . . , 2022] Average over firm-years Statistic Statistic

log
(
1 +

∑
s∈OSt∪{f}

ℓfst

Lft
· · ·

)
Labor-weighted

1s∈OSt OSS indicator 0.00030 0.00031 (0.00009)

×1f /∈Ft−1
× Initial year indicator 0.000057 0.000042 (0.000015)

× logLft × Log total labor 0.0019 0.0027 (0.0004)

↪→ ×1f /∈Ft−1
↪→ × Initial year indicator 0.00033 0.00031 (0.00008)

× log
∑t−1

τ=t Lfτ × Log total labor, plus 1 year 0.0020 0.0028 (0.0004)

× log
∑t−2

τ=t Lfτ × Log total labor, plus 2 years 0.0021 0.0029 (0.0004)

× log
∑t

τ=1 Lsτ/ℓ × Log OSS labor 0.0029 0.0042 (0.0006)

↪→ ×1f /∈Ft−1
↪→ × Initial year indicator 0.00060 0.00056 (0.00014)

× log
∑t−1

τ=1 Lsτ/ℓ × Log OSS labor, less 1 year 0.0029 0.0041 (0.0005)

↪→ ×1f /∈Ft−1
↪→ × Initial year indicator 0.00058 0.00056 (0.00013)

× log
∑t−2

τ=1 Lsτ/ℓ × Log OSS labor, less 2 years 0.0027 0.0041 (0.0005)

↪→ ×1f /∈Ft−1
↪→ × Initial year indicator 0.00050 0.00055 (0.00012)

×
∑t

τ=1 Lc(f)sτ/
∑t

τ=1 Lsτ × Domestic share 0.000089 0.000079 (0.000030)

↪→ ×1f /∈Ft−1
↪→ × Initial year indicator 0.0000145 0.0000107 (0.0000056)

×
∑t−1

τ=1 Lc(f)sτ/
∑t−1

τ=1 Lsτ × Log OSS labor, less 1 year 0.000088 0.000080 (0.000029)

↪→ ×1f /∈Ft−1
↪→ × Initial year indicator 0.0000145 0.0000108 (0.0000058)

×
∑t−2

τ=1 Lc(f)sτ/
∑t−2

τ=1 Lsτ × Log OSS labor, less 2 years 0.000083 0.000081 (0.000027)

↪→ ×1f /∈Ft−1
↪→ × Initial year indicator 0.0000146 0.0000110 (0.0000058)

× log
∑t

τ=1 ℓfsτ/ℓ × Log own labor 0.00182 0.00236 (0.00048)

Continued on the next page.

94

Continued from the previous page.

Observed Simulated

↪→ ×1f /∈Ft−1
↪→ × Initial year indicator 0.000338 0.000260 (0.000105)

×1∑t−1
τ=1 ℓfsτ>0 × Any own labor, less 1 year 0.00146 0.00219 (0.00044)

↪→ × log
∑t−1

τ=1 ℓfsτ/ℓ ↪→ × Log own labor, less 1 year 0.00146 0.00219 (0.00044)

×1∑t−2
τ=1 ℓfsτ>0 × Any own labor, less 2 years 0.00123 0.00197 (0.00041)

↪→ × log
∑t−2

τ=1 ℓfsτ/ℓ ↪→ × Log own labor, less 2 years 0.00123 0.00197 (0.00041)

1ℓfst−1=0 Switching indicator 0.000049 0.000008 (0.000005)

log
(
1 + Ŝ(· · · | s ∈ OSt ∪ {f})

)
Standard deviation over software

ℓfst/Lft Labor share 0.000054 0.000046 (0.000018)

log
(
1 +

∑
j∈Jft,s=spjt

Qjt

Qft
· · ·

)
Traffic-weighted, p = backend

1s∈OSt OSS indicator 0.087 0.109† (0.004)

× logLft × Log total labor 0.307 0.389† (0.013)

× log
∑t

τ=1 Lsτ/ℓ × Log OSS labor 0.343 0.356 (0.016)

↪→ ×1j /∈Jt−1
↪→ × Initial year indicator 0.0464 0.0482 (0.0033)

× log
∑t−1

τ=1 Lsτ/ℓ × Log OSS labor, less 1 year 0.339 0.355 (0.016)

↪→ ×1j /∈Jt−1
↪→ × Initial year indicator 0.0459 0.0480 (0.0033)

× log
∑t−2

τ=1 Lsτ/ℓ × Log OSS labor, less 2 years 0.323 0.352 (0.017)

↪→ ×1j /∈Jt−1
↪→ × Initial year indicator 0.0439 0.0477 (0.0032)

×
∑t

τ=1 Lc(f)sτ/
∑t

τ=1 Lsτ × Domestic share 0.019 0.014 (0.001)

↪→ ×1j /∈Jt−1
↪→ × Initial year indicator 0.0020 0.0014 (0.0002)

×
∑t−1

τ=1 Lc(f)sτ/
∑t−1

τ=1 Lsτ × Domestic share, less 1 year 0.020 0.014 (0.001)

↪→ ×1j /∈Jt−1
↪→ × Initial year indicator 0.0020 0.0014 (0.0002)

×
∑t−2

τ=1 Lc(f)sτ/
∑t−2

τ=1 Lsτ × Domestic share, less 2 years 0.020 0.015 (0.002)

↪→ ×1j /∈Jt−1
↪→ × Initial year indicator 0.0020 0.0014 (0.0002)

×1∑t
τ=1 ℓfsτ>0 × Any own labor 0.014 0.015 (0.001)

↪→ ×1j /∈Jt−1
↪→ × Initial year indicator 0.0010 0.0015 (0.0002)

↪→ × log
∑t

τ=1 ℓfsτ/ℓ ↪→ × Log own labor 0.031 0.048 (0.005)

↪→ ×1j /∈Jt−1
↪→ × Initial year indicator 0.0023 0.0046 (0.0006)

×1∑t−1
τ=1 ℓfsτ>0 × Any own labor, less 1 year 0.012 0.015 (0.001)

↪→ × log
∑t−1

τ=1 ℓfsτ/ℓ ↪→ × Log own labor, less 1 year 0.026 0.047 (0.004)

×1∑t−2
τ=1 ℓfsτ>0 × Any own labor, less 2 years 0.010 0.015 (0.001)

↪→ × log
∑t−2

τ=1 ℓfsτ/ℓ ↪→ × Log own labor, less 2 years 0.021 0.043 (0.004)

1s/∈Sjt−1
Switching indicator 0.028 0.039 (0.001)

log
(
1 +

∑
j∈Jft,s=spjt

Qjt

Qft
· · ·

)
Traffic-weighted, p = JavaScript

Continued on the next page.

95

Continued from the previous page.

Observed Simulated

1s∈OSt
OSS indicator 0.074 0.035† (0.003)

× logLft × Log total labor 0.259 0.124† (0.009)

× log
∑t

τ=1 Lsτ/ℓ × Log OSS labor 0.294 0.299 (0.013)

↪→ ×1j /∈Jt−1
↪→ × Initial year indicator 0.0410 0.0417 (0.0027)

× log
∑t−1

τ=1 Lsτ/ℓ × Log OSS labor, less 1 year 0.292 0.298 (0.013)

↪→ ×1j /∈Jt−1
↪→ × Initial year indicator 0.0407 0.0415 (0.0027)

× log
∑t−2

τ=1 Lsτ/ℓ × Log OSS labor, less 2 years 0.289 0.296 (0.012)

↪→ ×1j /∈Jt−1
↪→ × Initial year indicator 0.0403 0.0412 (0.0026)

×
∑t

τ=1 Lc(f)sτ/
∑t

τ=1 Lsτ × Domestic share 0.015 0.011 (0.001)

↪→ ×1j /∈Jt−1
↪→ × Initial year indicator 0.0017 0.0013 (0.0002)

×
∑t−1

τ=1 Lc(f)sτ/
∑t−1

τ=1 Lsτ × Domestic share, less 1 year 0.015 0.011 (0.001)

↪→ ×1j /∈Jt−1
↪→ × Initial year indicator 0.0017 0.0013 (0.0002)

×
∑t−2

τ=1 Lc(f)sτ/
∑t−2

τ=1 Lsτ × Domestic share, less 2 years 0.016 0.011 (0.001)

↪→ ×1j /∈Jt−1
↪→ × Initial year indicator 0.0017 0.0013 (0.0002)

×1∑t
τ=1 ℓfsτ>0 × Any own labor 0.030 0.014 (0.002)

↪→ ×1j /∈Jt−1
↪→ × Initial year indicator 0.0023 0.0022 (0.0003)

↪→ × log
∑t

τ=1 ℓfsτ/ℓ ↪→ × Log own labor 0.064 0.038 (0.011)

↪→ ×1j /∈Jt−1
↪→ × Initial year indicator 0.0049 0.0061 (0.0012)

×1∑t−1
τ=1 ℓfsτ>0 × Any own labor, less 1 year 0.028 0.014 (0.002)

↪→ × log
∑t−1

τ=1 ℓfsτ/ℓ ↪→ × Log own labor, less 1 year 0.060 0.036 (0.011)

×1∑t−2
τ=1 ℓfsτ>0 × Any own labor, less 2 years 0.025 0.013 (0.002)

↪→ × log
∑t−2

τ=1 ℓfsτ/ℓ ↪→ × Log own labor, less 2 years 0.053 0.034 (0.009)

1s/∈Sjt−1
Switching indicator 0.026 0.031 (0.001)

log
(
1 +

∑
j∈Jft,s=spjt

Qjt

Qft
· · ·

)
Traffic-weighted, p = user interface

1s∈OSt
OSS indicator 0.091 0.073† (0.003)

× logLft × Log total labor 0.318 0.261† (0.011)

× log
∑t

τ=1 Lsτ/ℓ × Log OSS labor 0.365 0.368 (0.016)

↪→ ×1j /∈Jt−1
↪→ × Initial year indicator 0.0567 0.0569 (0.0035)

× log
∑t−1

τ=1 Lsτ/ℓ × Log OSS labor, less 1 year 0.364 0.367 (0.016)

↪→ ×1j /∈Jt−1
↪→ × Initial year indicator 0.0565 0.0567 (0.0035)

× log
∑t−2

τ=1 Lsτ/ℓ × Log OSS labor, less 2 years 0.363 0.365 (0.016)

↪→ ×1j /∈Jt−1
↪→ × Initial year indicator 0.0563 0.0563 (0.0035)

×
∑t

τ=1 Lc(f)sτ/
∑t

τ=1 Lsτ × Domestic share 0.017 0.016 (0.001)

↪→ ×1j /∈Jt−1
↪→ × Initial year indicator 0.0019 0.0018 (0.0002)

×
∑t−1

τ=1 Lc(f)sτ/
∑t−1

τ=1 Lsτ × Domestic share, less 1 year 0.017 0.016 (0.001)

Continued on the next page.

96

Continued from the previous page.

Observed Simulated

↪→ ×1j /∈Jt−1
↪→ × Initial year indicator 0.0020 0.0018 (0.0002)

×
∑t−2

τ=1 Lc(f)sτ/
∑t−2

τ=1 Lsτ × Domestic share, less 2 years 0.017 0.016 (0.001)

↪→ ×1j /∈Jt−1
↪→ × Initial year indicator 0.0020 0.0018 (0.0002)

×1∑t
τ=1 ℓfsτ>0 × Any own labor 0.024 0.019 (0.002)

↪→ ×1j /∈Jt−1
↪→ × Initial year indicator 0.0024 0.0026 (0.0003)

↪→ × log
∑t

τ=1 ℓfsτ/ℓ ↪→ × Log own labor 0.052 0.053 (0.008)

↪→ ×1j /∈Jt−1
↪→ × Initial year indicator 0.0050 0.0070 (0.0011)

×1∑t−1
τ=1 ℓfsτ>0 × Any own labor, less 1 year 0.022 0.019 (0.002)

↪→ × log
∑t−1

τ=1 ℓfsτ/ℓ ↪→ × Log own labor, less 1 year 0.049 0.051 (0.008)

×1∑t−2
τ=1 ℓfsτ>0 × Any own labor, less 2 years 0.020 0.019 (0.002)

↪→ × log
∑t−2

τ=1 ℓfsτ/ℓ ↪→ × Log own labor, less 2 years 0.044 0.047 (0.007)

1s/∈Sjt−1
Switching indicator 0.032 0.039 (0.001)

Ŝ(· · · | s ∈ OSt ∪ {f}, · · ·) Standard deviation over software∑
j∈Jft,s=sjpt

Qjt

Qft
Traffic share, p = backend 0.2748 0.2743 (0.0002)∑

j∈Jft,s=sjpt

Qjt

Qft
Traffic share, p = JavaScript 0.3372 0.3366 (0.0002)∑

j∈Jft,s=sjpt

Qjt

Qft
Traffic share, p = user interface 0.3056 0.3050 (0.0002)

This table reports the moments targeted in supply-side estimation. Observed statistics are averages over
firm-years, while simulated statistics are also averaged over unobservable draws. Moments without a †
superscript are targeted during cost minimization estimation, while those with superscripts are targeted
during profit maximization estimation. Due to the quality and total investment constraints, the latter are
matched with zero error during cost minimization. The total labor of firm f is Lft = ℓfft +

∑
s∈OSt

ℓfst
and the labor of firms f ∈ Fc in country c on OSS s ∈ OSt is Lcst =

∑
f∈Fc

ℓfst. In parentheses, standard
errors are from the same bootstrap procedure used to report uncertainty in Table 4.

Estimation Procedure. Let θ = [δO, δP ,α
′,γ ′

L,γ
′
S, κL, κS, ρL, ρS, σL, σS]

′. In the first

stage (cost minimization) I optimize over the 20 parameters in θ without † superscripts in

Table 4, subject to the constraint that α sums to one. Denote these parameters by θ1.

In the second stage (profit maximization) I optimize over the two parameters in θ with

† superscripts, denoted by θ2. In each stage, I minimize the log of a minimum distance

objective function:107

θ̂1 = argmin
θ1

log
(
g1(θ1)

′ W1 g1(θ1)
)

and θ̂2 = argmin
θ2

log
(
g2(θ2)

′ W2 g2(θ2)
)
. (K1)

107I find that minimizing in log space alleviates some of the numerical challenges discussed below. Since
each estimator is overidentified, the argument of each logarithm is always positive.

97

Sample moments in g1(θ̂1) and g2(θ̂2) are differences between observed and simulated

averages in Appendix Table K1 without and with † superscripts, respectively. Weighting

matrices W1 and W2 are approximations of the optimal weighting matrices. The exception

is when θ1 leads to a very low average share of investment in OSS, as optimization (discussed

below) can get stuck in a local optimum with near-zero OSS investment. To avoid this, I

smoothly penalize the objective for θ1 values that result in an average OSS investment share

more than half a standard deviation below its observed value. This penalty is not binding

at the global optimum.

Since there are far more elements in W1 than my 80 bootstrap samples, I do not attempt

to estimate optimal weighting matrices by directly inverting bootstrapped covariance matri-

ces. Instead, I use an approximation that accounts for the primary source of uncertainty—

firm sampling—while also considering traffic and OSS investment uncertainty in how these

scale into covariances. Specifically, at the point estimates of traffic and OSS investment, I

compute the correlation matrix of the statistics in Appendix Table K1, clustering by firm.

For each stage, I extract the relevant sub-matrix of correlations, invert it, and scale it into

covariances using the bootstrapped standard deviations from Appendix Table K1.

Observed statistics are averages over firm-years, while simulated statistics are also aver-

aged over 10 histories of wage unobservables ωL
fst and ωS

jst drawn according to (17) and (18).

For each set of wage unobservables and firm-year in my final sample, I solve the cost mini-

mization problem in (16) or, for the second stage, the profit maximization problem in (19).

Because of spillovers, multiple equilibria are possible. During estimation, I select the

observed equilibrium by conditioning on the spillovers observed in the data. Specifically,

after solving for firms’ choices, instead of updating overall OSS capital Kst and country-

specific contributions Kcst based on the new choices, I fix both to their observed values,

conditional on the current guess of the OSS capital depreciation rate δO. Similarly, in the

second stage, I also fix consumers’ inclusive values to their observed values, conditional on

the estimated demand system in Appendix I. I relax both of these restrictions for the policy

simulations in Section 7.

Optimization. A challenge with optimizing the objectives in (K1) is that they involve

thousands of nested optimization problems, one for each set of unobservables and firm-year.

In Appendix L, I describe how I make solving these problems computationally feasible.

Despite using log-transformed matched statistics, tight termination tolerances, and slight

smoothing of discrete jumps, the large number of nested problems still introduces noise that

98

can stall traditional optimizers. When far from the optimum, optimization failure rates can

reach up to 15%, but when closer to the optimum, failure rates drop to below 0.1%. Instead

of starting with a classical optimizer, which would struggle with noise from relatively high

failure rates, I use a method from the machine learning literature, where optimizing noisy

loss functions is well-researched.

I begin with Bayesian optimization, a derivative-free global approach. I optimize the

first-stage objective function in (K1) using Meta’s OSS framework Ax (Bakshy et al., 2018),

which relies on BoTorch (Balandat et al., 2019) for Bayesian optimization. Ax constructs

a surrogate Gaussian Process model from the evaluated objectives and uses an acquisition

function to select the next best parameter values, balancing exploration and exploitation.108

The first stage (cost minimization) is challenging, as it requires optimizing 19 parameters.

I begin with 10 sets of 50 random initial evaluations within wide bounds, followed by 150

Bayesian iterations for each set. After global optimization, I fine-tune with a round of

local optimization starting from the parameters with the lowest objective across all Bayesian

evaluations. Near the global optimum, a maximum of 50 iterations using SciPy’s gradient-

based trust-region algorithm efficiently fine-tunes the objective.109

The second stage (profit maximization) is much simpler, involving just two parameters.

Instead of Bayesian optimization, which requires local fine-tuning, I use more iterations of

a deterministic global optimization algorithm. Specifically, I find that 100 objective evalua-

tions using the locally-biased DIRECT algorithm for global optimization works well (Jones,

Perttunen, and Stuckman, 1993; Gablonsky and Kelley, 2001).

Both objectives must also be optimized for each bootstrap sample. For each bootstrapped

first stage of estimation, I begin local optimization from the point estimates. Since profit

maximization involves discrete quality choices, which are difficult to smooth, gradient-based

optimization is less effective. For each bootstrapped second stage, I use the same Bayesian

optimization configuration that I used to obtain the point estimates.

Net Marginal Revenue. After cost minimization and before profit maximization, I esti-

mate marginal revenue net of any marginal costs. Since on the margin, each firm-year in my

sample affects the quality of its websites through a single continuous choice of total labor

108In my case, I find that the Log Noisy Expected Improvement (LogNEI) acquisition function (Daulton
et al., 2023) performs better and is considerably cheaper to compute than the Knowledge Gradient (KG)
acquisition function (Frazier et al., 2008), a popular alternative.
109I compute automatic gradients for the log of the cost minimization objective function in (K1) with

Google’s OSS framework JAX (Bradbury et al., 2018) and use the implicit function theorem to differentiate
through nested optimization (Blondel et al., 2022).

99

Lft, this implies a single optimality condition that I use in (20) to estimate a common net

marginal revenue Rft for each firm-year’s websites. Specifically, I evaluate (20) for each of

the 10 sets of cost unobservables used during estimation, and my estimator R̂ft is the average

across these sets.

There are four derivatives in (20). The first is ∂Qft/∂ξft, where Qft =
∑

j∈Jft
Qjt is

the firm’s overall traffic, and ∂ξft denotes a marginal change in all of its websites’ qualities

at once.110 I compute this first derivative by automatically differentiating the logit demand

system in (14).

The second two are ∂Cft/∂ξft and ∂Cft/∂Lft, where Cft is the minimum cost in (16).

I compute the former using the implicit function theorem to differentiate through the cost

minimization problem (Blondel et al., 2022). With Lft fixed, quality affects costs only

through the traffic shares in (10), making this term relatively unimportant. More important

is the latter derivative, which, as discussed in the text, equals the average wage Cft/Lft

multiplied by 1 + 1/η, where I use an averaged residual labor supply elasticity of η = 4.7

from Roussille and Scuderi (2024).

The final derivative is ∂Lft/∂ξft, the marginal change in total labor required to achieve

a marginal increase in the firm’s website qualities. I compute it by implicitly differentiating

the quality production function in (12): ∂Lft/∂ξft = Kft/β̂P because ∂Kft/∂Lft = 1.

L. Computational Details

In this appendix, I provide computational details on how I simulate data from the model.

Since I use a full solution approach for estimation, the simulation procedure is nearly identi-

cal for both estimation in Sections 5 and 6 and the policy simulations in Section 7. The key

difference is that I select the observed equilibrium during estimation but fully solve for equi-

libria during policy simulations. I automate differentiation, compilation, and parallelization

of the simulation procedure using Google’s OSS framework JAX (Bradbury et al., 2018).

Simulation Procedure. The simulation procedure is a nested loop over (i) histories of

simulated cost unobservables, (ii) years, (iii) equilibrium iterations, and (iv) firms. For the

long-run simulations in Section 7, there is only one year, while for estimation in Sections 5

and 6, there is no equilibrium iteration. The computationally demanding part of this process

is (iv), as it involves solving one or more nonlinear optimization problems and must be

110For single-website firms, ∂ξft = ∂ξjt denotes a simple partial derivative. For firms with multiple websites,
it is the derivative with respect to x where each ξjt in ξft is replaced by xjt + x, evaluated at x = 0.

100

repeated many thousands of times.

The first year of simulated data is either 2014, or, for long-run simulations, 2022. In

this year t, I draw unobservables ωL
fst and ωS

jst from their stationary distributions in (17)

and (18). In each subsequent year t, I update unobservables with innovations νL
fst and νS

jst

drawn from their respective distributions. I also update private capital Kft, OSS capital

Kst, country-specific components Kcst, and firm-specific components Kfst according to (3)

to (7). Since my ability to adjust for LinkedIn penetration rates improves in 2012, two years

before my sample starts, I only accumulate private capital up to a limited horizon.111

For the policy simulations, I fully solve for each year’s equilibrium by iterating on best

responses, starting with those in the data. Given data for year t, I compute firms’ choices

conditional on others’ and update the simulated data with their new choices. I update capital

Kft, Kst, Kcst, and Kfst according to (3) to (7), and, when choices include quality, traffic

Qjt according to (14). In practice, I find that because of switching costs, three iterations are

sufficient for the dynamic simulations in Figure 7, and without switching costs, five iterations

are sufficient for the long-run simulations in Tables 5 and 6.

During estimation, I compute firms’ best responses to the observed data but perform a

partial update to select the observed equilibrium. Specifically, after computing firms’ choices

conditional on the observed choices of others, I do not update total OSS capital Kst or its

country-specific components Kcst. I hold these fixed at their observed values, which are a

function of observed investment and the OSS capital depreciation rate δO.

Firm f ’s choices include software sft, labor ℓft, and, when maximizing profit, quality ξft.

I first describe how I solve the firm’s cost minimization problem, followed by how I solve its

profit maximization problem.

Cost Minimization. The cost minimization problem in (16) over the firm’s software

choices sft = {sjpt}j∈Jft, p∈P and labor choices ℓft = {ℓfst}s∈OSt∪{f} is subject to two con-

straints. First, I fix total labor Lft = ℓfft+
∑

s∈OSt
ℓfst. Second, given my parameterization

of the quality production function Ξfjt(sjt,Kt) in (12), the quality constraint determines

the choice between in-house and OSS for each part of each of the firm’s websites.

For clarity, consider website j operated by firm f . If, in the observed data, the software

sjpt ∈ OSt is OSS, then when choosing software for the same website and part, the firm

must choose another OSS option in OSt. Conversely, if sjpt = f is in-house, the firm must

continue choosing in-house software for that website’s part under the quality constraint.

111Before 2012, the BLS does not separately report employment for web developers. Since my sample begins
in 2014, I replace (3) with Kft =

∑t−2
τ=t(1− δP)

t−τLft. I estimate a high δP , so this ends up mattering little.

101

Given my wage parameterization in (8) and subject to the two constraints, an equivalent

but more numerically stable version of the cost minimization problem is112

min
sft, ℓft

{
log

(∑
s∈OSt∪{f}

ℓfst
Lft

· exp
(
Devfst(ℓft,Kt)

))
+Opsft(sft,Kt)

}
. (L1)

The separability of the development and operations components is convenient because it

allows the software choice to be concentrated out. Since the operations component can be

expressed as a traffic-weighted average over the firm’s websites,113

Opsft(sft,Kt) =
∑
j∈Jft

Qjt

Qft
·Opsfjt(sjt,Kt), (L2)

it suffices to, for a guess of labor ℓft and hence capitalKt, find the software sjt that minimizes

the above website-specific operations component Opsfjt(sjt,Kt). Notably, solving for sjt can

be done independently for each website. Conditional on labor, this problem does not become

exponentially more complex for firms with many websites.

In practice, I optimize OSS investment {ℓfst}s∈OSt , set ℓfft = Lft −
∑

s∈OSt
ℓfst, and

concentrate out choice of software. To avoid optimization issues, I impose box constraints

ℓfst ∈
[
0, min

{
ℓ, Lft × ℓ̃

}]
, where ℓ is the 99th percentile of observed nonzero investment

ℓfst in s ∈ OSt, and ℓ̃ is the 99th percentile of observed nonzero shares of investment ℓfst/Lft

in s ∈ OSt. I enforce these bounds by optimizing ℓfst in logit space.

For the first year and equilibrium iteration, I initialize each ℓfst = ℓ/2, where ℓ is the

smallest increment of OSS investment estimated in Appendix G. After optimization, I retain

each optimized ℓfst for “hot starts” in subsequent equilibrium iterations and years. If opti-

mization is successful, I use the optimized OSS investment as a starting point for the next

equilibrium iteration. After solving for an equilibrium, I use the equilibrium OSS investment

from successful optimization as a starting point for the next year, if the firm remains in the

sample. Otherwise, I revert to ℓfst = ℓ/2.

I optimize the objective in (L1) using a JAX-compiled version of the Newton-CG trust-

region algorithm (7.2) from Nocedal and Wright (2006). I also use JAX to automatically

compute the gradient and Hessian-vector products for the objective, which are inputs for

the optimization algorithm. SciPy’s default optimization hyperparameters work well in my

112Investment incentives for the policy simulations in Section 7 enter additively within the log in the
development component.
113Opsfjt(sjt,Kt) =

∑
p∈P αpOpsfjpt(sjpt,Kt). The quality constraint also fixes traffic shares Qjt/Qft in

the operations parameterization; conditional on quality, traffic depends on neither software nor labor.

102

setting. Maximums of 500 outer and CG iterations are rarely binding, and I can impose

tight radius- and gradient-based tolerances of 10−12. The main challenge in optimization

comes from discrete jumps in the model, requiring minor smoothing to ensure progress.

Smoothing. First, software is discrete. A zero gradient of the operations component with

respect to labor poses challenges for the optimizer, which expects a smooth objective. Instead

of representing sjt with binary indicators for whether each s ∈ OSt∪{f} satisfies the quality

constraint and minimizes Opsfjt(sjt,Kt) in (L2), I pass values of −Opsfjt(sjt,Kt) through

the softmax function

softmaxi(x) =
exp(xi/λS)∑
ι exp(xι/λS)

, (L3)

where λS is a smoothing parameter. Given the magnitudes of Opsfjt(sjt,Kt) in my setting,

I find that λS = 0.1 produces smoothed indicators that the optimizer can handle, while

remaining close to their discrete counterparts.

Second, labor also has discrete features. OSS investment estimated in Appendix G is

always at least its minimum estimated increment, ℓfst ≥ ℓ, except when it is zero, ℓfst = 0.

To capture this when simulating data, I use a modification of the smoothstep function:

smoothstep(x) = 3x3 − 2x3. (L4)

I multiply each guess of ℓfst by the following modification, evaluated at ℓfst:

softstep(x) = smoothstep

(
exp(min{max{x/ℓ, 0}, 1}/λL)− 1

exp(1/λL)− 1

)
. (L5)

For x ≥ ℓ, softstep(x) = 1, and as x approaches zero, so does softstep(x). For smaller

values of the smoothing parameter λL, softstep(x) approaches a discrete step function around

ℓ. Again, I find that λL = 0.1 results in simulated OSS investment that closely matches the

discreteness in the data while still being smooth enough for the optimizer to handle.

Labor discreteness also affects capital. When computing the software characteristics

XW
fst(Kt) in (11), I bound the OSS capital terms Kst, Kcst, and Kfst from below by ℓ.

Without this, highly depreciated values could result in very negative logarithms. Specifically,

when solving the firm’s cost minimization problem, I replace logKst and logKfst in (11) with

log(max{ℓ,Kst}) and log(max{ℓ,Kfst}), respectively. I replace 1Kfst>0 with the previously

discussed softstep(ℓfst) when there were no prior firm-specific contributions (i.e.,Kfst = ℓfst).

Similarly, I scale Kc(f)st/Kst by softstep(ℓfst) when there were no prior country-specific

103

contributions (i.e., Kc(f)st = ℓfst).

Smoothing also improves supply estimation in Appendix K.114 I compute matched statis-

tics in Appendix Table K1 using the smoothed software and labor discussed earlier. I replace

conditional logic regarding software in Appendix Table K1 with weighted averages across

smoothed software indicators. I use the smoothed labor values, scaled by the softstep function

when below ℓ. Additionally, I replace all log OSS labor terms with log(max{ℓ, ·})×softstep(·),
I replace all indicators for OSS labor presence with softstep(·), and I scale each domestic

share by softstep(·) evaluated at the numerator.

Profit Maximization. The profit maximization problem in (19) over ξft = {ξjt}j∈Jft

is subject to the constraint that quality lies within the range of the production function

Ξfjt(sjt,Kt) in (12). Since I fix total labor Lft and thus private capital Kft, this range

consists of the qualities from each combination of in-house versus OSS—a binary choice—for

the parts of the firms’ websites.

Given my parameterization of the quality production function, the qualities from these

combinations are distinct, so the choice of quality can be re-expressed as the choice of

which combination of in-house versus OSS maximizes profit. For a given combination, it is

straightforward to compute traffic Qjt(ξt) in (14) for each of the firm’s websites, scale total

traffic Qft(ξt) =
∑

j∈Jft
Qjt(ξt) by net marginal revenue R̂ft estimated in Appendix K, and

subtract costs evaluated at the optimal software and labor choices.

This problem becomes exponentially more difficult for firms with many websites, so I

impose the constraint that for a given firm-year-part, the firm make the same binary choice

of in-house versus OSS for all of its websites. Since there are |P| = 3 parts, under this

constraint I solve the cost minimization problem 23 = 8 times, compute profit for each

combination, and keep the result from the one with the highest profit.115

M. Intuition from Stylized Models

In this appendix, I use simple parameterizations of the model from Section 4 to illustrate

the effects of government involvement in the private provision of OSS.

First, I consider the trade-off between in-house vs. open-access provision within a single

114Without smoothing and with a finite number of simulation draws, the first-stage objective function in
(K1) features discrete jumps. This is less of a concern for global Bayesian optimization, which is robust to
non-smooth objectives, but it does complicate local fine-tuning that uses gradients and performs better with
smoother objective functions.
115I expect this restriction to have little practical impact; across firm-year-parts with multiple websites,

87% either only use in-house software or only OSS.

104

country. Second, I explore the international version of this trade-off: domestic vs. foreign

provision. For each case, I first examine the effects of government involvement without

competition, then introduce competition to illustrate the effects of business stealing.

In-House vs. Open-Access. There is one OSS, o, and two firms, f ∈ {a, b}. Each chooses

to use sf ∈ {o, f} and whether to contribute to the OSS, ℓf ∈ {0, 1}. Payoffs are

Πf = πO · 1sf=o︸ ︷︷ ︸
Use
OSS

+ πL · ℓf︸︷︷︸
Invest
in OSS

+ π& · 1sf=o · ℓf︸ ︷︷ ︸
Use & invest

in OSS

+ πE · 1sf=o · ℓ−f︸ ︷︷ ︸
Externality from

other’s OSS investment

. (M1)

Assume it is more profitable to use in-house software when the OSS has no contributions,

πO < 0, and that the cost of investing in OSS exceeds any direct benefits, πL < 0. However,

there is a private benefit from investing in OSS when it is also being used, π& > 0, and a

public benefit from the other firm’s investment, πE > 0.

The payoff matrix is in Appendix Table M1. If using and investing in OSS is unprofitable

without the externality, πO + πL + π& < 0 < πO + πL + π& + πE, then there are either one

or two pure strategy Nash equilibria. The top-left corner is an equilibrium where both firms

use in-house software and neither invests in OSS. The bottom-right is an equilibrium where

both firms use and invest in OSS, but only if the private benefits of investing in OSS are

large enough, πL + π& > 0. Otherwise, each firm has an incentive to free-ride.

Appendix Table M1: In-House vs. Open-Access

sb = b: sb = o:
Πf or (Πa,Πb)

ℓb = 0 ℓb = 1 ℓb = 0 ℓb = 1

sa = a:
ℓa = 0 0 (0, πL) (0, πO) (0, πO+πL+π&)

ℓa = 1 (πL, 0) πL (πL, πO+πE) (πL, πO+πL+π&+πE)

sa = o:
ℓa = 0 (πO, 0) (πO+πE , πL) πO (πO+πE , πO+πL+π&)

ℓa = 1 (πO+πL+π&, 0) (πO+πL+π&+πE , πL) (πO+πL+π&, πO+πE) πO+πL+π&+πE

Government subsidies that increase the private benefits of investing in OSS can be effec-

tive for two reasons. First, increasing πL so that πL + π& > 0 makes the payoff-maximizing

bottom-right an equilibrium. Second, even if the bottom-right is an equilibrium, the status

quo may be the top-left. Temporarily increasing πL so that πL > 0 may shift the equilib-

105

rium to the bottom-right. The economic impact of such government policies depends on the

strength of private incentives to invest in OSS and the public benefits of that investment.

Business Stealing. Payoffs in (M1) and Appendix Table M1 feature only one positive

externality πE > 0. Now, assume that both firms compete in the same market, which

introduces the term πB · 1s−f=o · ℓf , representing a business-stealing externality πB. This

externality could be either positive or negative, depending on whether competitors’ best

responses to increased OSS investment are to reduce or improve the quality of their websites.

The matrix of payoff changes is in Appendix Table M2.

Appendix Table M2: Business Stealing

sb = b: sb = o:
∆Πf or ∆(Πa,Πb)

ℓb = 0 ℓb = 1 ℓb = 0 ℓb = 1

sa = a:
ℓa = 0 0 0 0 0

ℓa = 1 0 0 0 0

sa = o:
ℓa = 0 0 0 0 (0, πB)

ℓa = 1 0 0 (πB , 0) πB

With business stealing, the bottom-right remains an equilibrium only if private benefits

of investing in OSS are even larger or smaller, πL+π&+πB > 0, depending on the sign of πB.

For subsidies to be effective in a competitive environment, they must offset this additional

externality, which scales with the intensity of competition and with how much OSS affects

website quality.

Domestic vs. Foreign. Assume there are four firms, two in each country c(f) ∈ {U,C}.
All four use OSS, but there are now two to choose from, oU and oC . Each firm chooses to

use sf ∈ {oU , oC} and whether to contribute to it, ℓf ∈ {0, 1}. Payoffs are

Πf = πD · 1sf=oc(f)︸ ︷︷ ︸
Use

domestic OSS

+ πL · ℓf︸︷︷︸
Use & invest

in OSS

+ π& · 1sf=oc(f) · ℓf︸ ︷︷ ︸
Use & invest

in domestic OSS

+
∑
−f ̸=f

πE,−f→f · 1sf=s−f
· ℓ−f︸ ︷︷ ︸

Externality from
others’ OSS investment

. (M2)

Assume it is more profitable to use domestic OSS when there are no contributions, πD > 0,

and that the cost of investing in OSS outweighs any direct benefits, πL < 0. However, there

106

is a private benefit from investing in domestic OSS, π& > 0, and a public benefit from

other firms’ investments, πE,−f→f = πE · 1c(−f)=c(f) + π′
E · 1c(−f)̸=c(f), where the externality

πE > π′
E > 0 is stronger when contributions come from the same country. In this case,

public benefits are localized.

I consider pure strategy Nash equilibria where firms in the same country make the same

choices, sf = sc(f) and ℓf = ℓc(f), and hence have the same payoffs, Πf = Πc(f). The payoff

matrix is in Appendix Table M3. Identifying equilibria requires considering payoffs from

unilateral deviations not shown in the table.

Appendix Table M3: Domestic vs. Foreign

sC = oC : sC = oU :
Πf or

(ΠU ,

ΠC) ℓC = 0 ℓC = 1 ℓC = 0 ℓC = 1

sU = oU :
ℓU = 0 πD

(πD,

πD+πL+π&+πE)

(πD,

0)

(πD+πE ,

πL+πE)

ℓU = 1
(πD+πL+π&+πE ,

πD) πD+πL+π&+πE

(πD+πL+π&+πE ,

2π′
E)

(πD+πL+π&+πE+2π
′
E ,

πL+πE+2π
′
E)

sU = oC :
ℓU = 0

(0,

πD)

(2π′
E ,

πD+πL+π&+πE) 0
(0,

πL+πE)

ℓU = 1
(πL+πE ,

πD+πE)

(πL+πE+2π
′
E ,

πD+πL+π&+πE+2π
′
E)

(πL+πE ,

0) πL+πE

If the private benefit from domestic investment exceeds the direct costs, πL + π& > 0,

but public benefits from foreign investment are not too strong, 2π′
E < πD + πL + π& + πE,

then there are either one or two equilibria. If the externality from foreign investment is

relatively weak, 2π′
E < πD + πL + π&, the only equilibrium is “decoupled,” meaning each

country builds its own OSS. Otherwise, two equilibria exist, where one country builds OSS

while the other free-rides. Without interventions like subsidies to πL as discussed earlier, it

is not an equilibrium for both countries to invest in and use the same OSS.

Domestic-focused government policy can be effective when two equilibria exist. In the

web development industry, the equilibrium closest to the current status quo may be one

where the US builds its own OSS while China free-rides. Temporary subsidies or restrictions

that encourage Chinese firms to use and invest in Chinese OSS could shift the equilibrium

to the decoupled one and eventually to a China-preferred equilibrium, where China builds

its own OSS and the US free-rides. The economic impact of such policies depends on the

107

strength of private incentives to invest in domestic vs. foreign OSS and the localization of

resulting public benefits investment.

International Business Stealing. Again, payoffs in (M2) and Appendix Table M3 fea-

ture only positive externalities. Now, assume all firms compete in the same market, which

adds
∑

−f ̸=f πB,−f→f · 1s−f=sf · ℓf , with business stealing πB,−f→f = πB · 1c(−f)=c(f) + π′
B ·

1c(−f)̸=c(f). We expect this effect to be stronger within a country, |πB| > |π′
B|, due to “home

bias.” The matrix of payoff changes is in Appendix Table M4.

Appendix Table M4: International Business Stealing

sC = oC : sC = oU :
∆Πf or ∆(ΠU ,ΠC)

ℓC = 0 ℓC = 1 ℓC = 0 ℓC = 1

sU = oU :
ℓU = 0 0 (0, πB) 0 (0, πB+2π

′
B)

ℓU = 1 (πB , 0) πB (πB+2π
′
B , 0) πB+2π

′
B

sU = oC :
ℓU = 0 0 (0, πB+2π

′
B) 0 (0, πB)

ℓU = 1 (πB+2π
′
B , 0) πB+2π

′
B (πB , 0) πB

With negative business stealing πB < π′
B < 0, firms are more likely to deviate from

the equilibrium where each country builds its own OSS because incentives to free-ride are

stronger. The opposite holds if business stealing is positive. Temporary subsidies or restric-

tions that encourage Chinese firms to use and invest in Chinese OSS must overcome this

additional externality from business stealing within China. Similarly, subsidies would need

to be either larger or smaller to maintain an equilibrium where both countries use and invest

in the same OSS. The required change in subsidies depends on the intensity of domestic and

foreign competition.

N. Additional Policy Simulations

In this appendix, I show how OSS policy outcomes vary with policy details and the model’s

empirical content by rerunning the simulations from Section 7 using different policy and

model parameters.

Stronger Localized Benefits. In column (i) of Appendix Table N1, identical to column

(i) in Table 5, simulated Chinese restrictions on foreign collaboration prove ineffective at

108

promoting investment into domestic OSS. Given the model’s estimates, China’s coordina-

tion problem is not severe enough for penalizing foreign collaboration to significantly shift

investment from foreign-built to domestic OSS.

In column (ii) of Appendix Table N1, I rerun the same simulation with increased localized

public benefits from OSS investment in China. I scale the estimates in γ̂S on logKst and

Kc(f)st/Kst by five for Chinese firms, increasing public benefits and their localization. With

a more significant coordination problem, restrictions are more likely to increase Chinese OSS

investment and even lower domestic costs.

Stronger Private Benefits. In column (iii) of Appendix Table N1, identical to column

(iv) of Table 5, a global subsidy for OSS investment is highly effective at lowering costs.

Since the private benefits of OSS investment are much smaller than the public benefits,

subsidies help reduce underprovision by closing the gap between them.

In column (iv) of Appendix Table N1, I rerun the simulation after increasing the private

benefits from OSS investment for all firms. I scale the estimate in γ̂S on logKfst by five,

increasing the private benefits from investing in OSS. With public benefits unchanged, the

gap between public and private benefits shrinks, making subsidies less effective. Each dollar

subsidized reduces costs by around four times less.

Usage-Weighted Subsidies. In columns (i) and (iii) of Appendix Table N2, identical to

columns (iii) and (iv) of Table 5, subsidies for OSS investment effectively lower costs. On

the left, US-focused subsidies are particularly cost-effective. Since firms disproportionately

use US-built OSS, subsidizing investment in these OSS leads to larger global cost reductions

compared to investing in OSS built elsewhere.

A natural question is whether targeting OSS with higher usage could further improve

subsidy cost-effectiveness. In column (ii) of Appendix Table N2, instead of weighting by

domestic capital shares, I instead weight by the share of usage for each OSS, across all website

parts in the sample. Cost reductions per dollar subsidized are about 30% higher, except for

China. In column (iv), weighting global subsidies by usage increases cost-effectiveness by

about 80% globally.

Business Stealing. In column (i) of Appendix Table N3, identical to column (iv) in

Table 6, policy-driven profit changes are driven by cost reductions, and the confidence interval

for the change in consumer surplus includes zero. The estimated effect of OSS on website

quality, β̂S, is too weak for business stealing concerns to be a first-order issue.

109

In column (ii) of Appendix Table N3, I rerun the same simulation after increasing the

amount of business stealing. I set the impact of OSS on quality to β̂S = β̂V 1 > 0, the strong

domestic preference for non-US and non-Chinese consumers. Policy-driven increases in OSS

investment decline as firms internalize that their investment will lead competitors to use

more OSS and steal profits. Business stealing concerns mitigate cost reductions and nearly

eliminate profit gains. However, since consumers now prefer OSS, they are much better off.

“Foreign Bias”. In column (iii) of Appendix Table N3, I instead replace consumer “home

bias” with “foreign bias.” Specifically, I flip the signs in β̂V . Policy-driven changes in OSS

investment and firm costs remain similar to the case with home bias, but both increases in

profit and decreases in consumer surplus are attenuated. With more competition, firms are

less able to compound their lower costs into greater profit, and consumers are better able to

substitute away from websites with reduced quality.

110

Appendix Table N1: Cost Minimization with Stronger Localized and Private Benefits

Stronger localized public
benefits for all Chinese firms

Stronger private
benefits for all firms

(i) Unchanged (ii) Stronger (iii) Unchanged (iv) Stronger

Restrict investment in foreign web OSS China China
Subsidize investment in all web OSS Global Global

Investment in web OSS -0.2% -0.3% +57.9% +13.4%
[-0.5, -0.0] [-0.5, -0.1] [+49.9, +63.9] [+12.5, +14.9]

↪→ US +0.0% +0.0% +39.8% +8.6%
[-0.1, +0.1] [-0.1, +0.0] [+35.7, +41.8] [+8.2, +9.0]

↪→ China -3.1% -5.3% +57.4% +16.6%
[-5.1, -1.4] [-6.6, -2.5] [+42.6, +63.6] [+15.6, +18.1]

Domestic web OSS investment -0.0% +0.1% +44.8% +8.9%
[-0.1, +0.1] [-0.1, +0.2] [+40.1, +46.6] [+8.5, +9.4]

↪→ US +0.0% +0.0% +38.6% +8.1%
[-0.0, +0.1] [-0.1, +0.1] [+34.4, +40.2] [+7.7, +8.6]

↪→ China -0.4% +0.1% +65.2% +10.7%
[-1.0, +0.5] [-0.7, +1.0] [+60.1, +72.9] [+9.6, +11.9]

Investment incentives, millions +$6.2 +$11.2
[+5.1, +7.1] [+10.3, +12.0]

↪→ US +$2.6 +$5.5
[+2.1, +2.8] [+5.2, +5.8]

↪→ China -$0.1 -$0.1 +$0.5 +$0.8
[-0.1, -0.1] [-0.1, -0.1] [+0.4, +0.6] [+0.8, +0.9]

Firm costs, per dollar of incentive +$7.2 -$0.6 -$26.1 -$6.4
[+1.6, +16.4] [-11.9, +13.6] [-28.3, -25.1] [-7.4, -5.6]

↪→ US +$4.2 +$7.3 -$20.9 -$4.2
[+0.3, +11.5] [-4.2, +13.9] [-22.4, -19.8] [-4.7, -3.7]

↪→ China +$1.8 -$2.4 -$1.4 -$0.4
[+1.3, +2.5] [-8.7, +1.0] [-1.5, -1.3] [-0.5, -0.3]

Column (i) is identical to column (i) in Table 5, while column (ii) in this table is the same but scales the es-
timates in γ̂S on logKst and Kc(f)st/Kst by five for Chinese firms. Column (iii) is identical to column (iv) in
Table 5, while column (iv) in this table is the same but scales the estimate in γ̂L on logKfst by five.

111

Appendix Table N2: Cost Minimization with Usage-Weighted Subsidies

Subsidy weighting

(i) Domestic (ii) Usage (iii) Unweighted (iv) Usage

Subsidize domestic OSS investment China & US
Subsidize investment in all web OSS China & US Global Global

Investment in web OSS +9.1% +1.8% +57.9% +4.8%
[+8.0, +10.0] [+1.4, +2.2] [+49.9, +63.9] [+4.0, +5.4]

↪→ US +16.2% +3.5% +39.8% +3.4%
[+13.9, +17.1] [+2.9, +4.0] [+35.7, +41.8] [+2.9, +3.9]

↪→ China +21.4% +2.4% +57.4% +2.5%
[+19.2, +25.3] [+1.7, +3.5] [+42.6, +63.6] [+1.6, +4.1]

Domestic web OSS investment +21.2% +3.8% +44.8% +3.8%
[+18.6, +22.5] [+3.2, +4.2] [+40.1, +46.6] [+3.3, +4.3]

↪→ US +19.6% +4.3% +38.6% +3.7%
[+17.0, +20.9] [+3.4, +5.0] [+34.4, +40.2] [+3.1, +4.4]

↪→ China +46.7% +2.6% +65.2% +2.7%
[+41.9, +50.1] [+1.3, +3.8] [+60.1, +72.9] [+1.2, +3.5]

Investment incentives, millions +$0.9 +$0.2 +$6.2 +$0.4
[+0.8, +1.0] [+0.2, +0.2] [+5.1, +7.1] [+0.4, +0.5]

↪→ US +$0.8 +$0.2 +$2.6 +$0.2
[+0.6, +0.9] [+0.2, +0.2] [+2.1, +2.8] [+0.2, +0.2]

↪→ China +$0.1 +$0.0 +$0.5 +$0.0
[+0.1, +0.1] [+0.0, +0.0] [+0.4, +0.6] [+0.0, +0.0]

Firm costs, per dollar of incentive -$30.4 -$41.6 -$26.1 -$46.2
[-36.6, -26.9] [-51.3, -31.6] [-28.3, -25.1] [-58.1, -35.8]

↪→ US -$25.5 -$34.5 -$20.9 -$35.9
[-30.4, -22.7] [-44.3, -27.0] [-22.4, -19.8] [-45.5, -27.1]

↪→ China -$1.7 -$1.9 -$1.4 -$2.1
[-1.8, -1.5] [-2.3, -1.5] [-1.5, -1.3] [-2.7, -1.8]

Columns (i) and (iii) are identical to columns (iii) and (iv) in Table 5, respectively, while columns (ii) and
(iv) in this table instead weight subsidies for investing in each s ∈ OSt by its share of usage among OSt.

112

Appendix Table N3: Profit Maximization with Business Stealing and “Foreign Bias”

(i) Unchanged (ii) Business stealing (iii) “Foreign bias”

Subsidize investment in all web OSS Global Global Global

Investment in web OSS +85.7% +50.4% +84.0%
[+68.5, +107.2] [+33.2, +64.6] [+71.1, +104.0]

↪→ US +43.0% +30.2% +46.0%
[+35.5, +51.5] [+23.6, +36.7] [+38.3, +53.2]

↪→ China +69.7% +36.8% +67.5%
[+51.7, +85.5] [+16.1, +47.7] [+53.7, +84.3]

Domestic web OSS investment +44.0% +28.5% +43.7%
[+33.1, +53.2] [+20.8, +33.1] [+37.6, +52.9]

↪→ US +24.5% +21.2% +26.9%
[+18.7, +28.4] [+16.0, +24.6] [+22.0, +29.0]

↪→ China +48.4% +18.2% +46.0%
[+39.5, +60.6] [+8.7, +26.2] [+28.3, +56.5]

Investment incentives, millions +$47.0 +$30.3 +$53.0
[+34.1, +56.3] [+23.4, +37.4] [+38.8, +56.2]

↪→ US +$10.8 +$9.5 +$11.7
[+8.8, +12.3] [+7.8, +10.7] [+9.5, +12.8]

↪→ China +$5.0 +$2.9 +$5.1
[+3.6, +6.0] [+2.4, +3.6] [+3.7, +6.1]

Firm costs, per dollar of incentive -$9.7 -$7.2 -$8.8
[-11.0, -7.9] [-8.8, -4.8] [-9.3, -6.8]

↪→ US -$6.5 -$4.8 -$5.2
[-7.4, -5.0] [-6.1, -3.2] [-6.0, -4.3]

↪→ China -$1.2 -$0.8 -$1.1
[-1.5, -1.0] [-1.1, -0.5] [-1.4, -0.9]

Firm profit, per dollar of incentive +$13.8 +$2.4 +$9.2
[+10.2, +20.0] [-4.1, +8.8] [+7.5, +10.0]

↪→ US +$8.7 +$0.4 +$5.7
[+6.9, +11.7] [-5.8, +3.3] [+4.2, +7.3]

↪→ China +$1.5 +$0.8 +$1.1
[+0.9, +1.8] [+0.2, +1.4] [+0.9, +1.5]

Consumer surplus, per capita -$19.2 +$32.3 -$6.6
[-80.3, -0.1] [-12.4, +99.4] [-17.6, +7.3]

↪→ US -$80.1 +$84.5 -$10.8
[-249.6, -9.1] [-26.1, +344.4] [-56.3, +26.5]

↪→ China -$21.0 +$29.0 -$9.7
[-120.7, +10.0] [-49.3, +118.7] [-33.8, +22.0]

Column (i) is identical to column (iv) in Table 6. Column (ii) in this table is the same but sets the

effect of OSS on quality to β̂S = β̂V 1, the domestic preference for non-US and non-Chinese consumers.
Column (iii) leaves β̂S equal to this value and flips the sign of β̂V .

113

	Introduction
	Background
	Open Source Software
	Restrictions in China
	Web Development

	Data
	Panel Construction
	Country-Level Patterns
	Firm-Level Sample Restrictions
	Firm-Level Patterns

	Model
	Website Supply
	Website Demand
	Industry Equilibrium

	Estimation
	Demand Estimation
	Quality Production Function Estimation
	Revealed Preferences from Cost Minimization
	Net Marginal Revenue Estimation
	Revealed Preferences from Profit Maximization

	Estimates
	Demand Estimates
	Supply Estimates

	Simulations
	Rationales for Government Intervention
	Heightened Restrictions in China
	Heightened Subsidies
	Product Market Competition

	Conclusion
	References
	Appendices
	GitHub and Gitee Data
	Website Data
	Traffic Data
	Detecting Software
	Matching Contributors and Firms
	Classifying Countries, Languages, and Markets
	Measuring OSS Investment
	Measuring In-House Investment
	Demand Estimation Details
	Production Function Estimation Details
	Supply Estimation Details
	Computational Details
	Intuition from Stylized Models
	Additional Policy Simulations

